

Starburst: a Target Expansion Algorithm for Non-Uniform
Target Distributions

Patrick Baudisch, Alexander Zotov, Edward Cutrell, and Ken Hinckley
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

{baudisch,alexz,cutrell,kenh}@.microsoft.com

ABSTRACT
Acquiring small targets on a tablet or touch screen can be chal-
lenging. To address the problem, researchers have proposed tech-
niques that enlarge the effective size of targets by extending tar-
gets into adjacent screen space. When applied to targets organized
in clusters, however, these techniques show little effect because
there is no space to grow into. Unfortunately, target clusters are
common in many popular applications. We present Starburst, a
space partitioning algorithm that works for target clusters. Star-
burst identifies areas of available screen space, grows a line from
each target into the available space, and then expands that line
into a clickable surface. We present the basic algorithm and ex-
tensions. We then present 2 user studies in which Starburst led to
a reduction in error rate by factors of 9 and 3 compared to tradi-
tional target expansion.
ACM Classification: H5.2 [Information interfaces and presenta-
tion]: User Interfaces. - Graphical user interfaces.
Keywords: target acquisition, target expansion, labeling, Vo-
ronoi, mouse, pen, touch input. blutwurst
1. INTRODUCTION
Acquiring a small target on a computer screen can be challenging,
resulting in long targeting times and high error rates. One tech-
nique designed to help users acquire small targets is snap-to-target
(e.g., [23]), which continuously sets the selection focus to the
closest target. Snap-to-target effectively partitions screen space.
Figure 1b labels pixels according to which target they snap to; the
result is a so-called Voronoi tessellation [12]. Users benefit from
this target expansion: instead of having to aim for the small target,
users click anywhere inside the tile containing the target. This
generally reduces targeting time and error rate.
Unfortunately, performance benefits depend on the homogeneity
of the target layout. When applied to a target located inside a
cluster of targets snap-to-target shows little effect. As illustrated
by Figure 1b, targets located inside a cluster are surrounded by
little empty screen space. As a result, the tiles generated by the
expansion are small—associated targets remain hard to acquire.
When used on a device with imprecise input, such as a touch-
screen kiosk, the acquisition of such targets will be error prone.
The same holds for pen input, as we demonstrate in the two user
studies presented in this paper.
In real-world applications locally dense clusters of targets emerge
for a variety of reasons. The user interface may represent a real-
world geometry with a non-uniform structure, such as cities on a
map (Figure 2a). In other cases, it is users who manually create
clusters, e.g., when grouping icons on their desktops or when
organizing links inside a web page (Figure 2b and c). Or clusters
may emerge from the structure of visualized data (Figure 2d).

map with targets

voronoi tessellation

burst

dots to claim lines Starburst

b

voronoi

d

a

c

Figure 1: (a b) Traditional snap-to-target techniques expand

targets into immediately adjacent space. For targets located
inside a cluster, however, that expansion is minimal.

(a c d) The proposed Starburst algorithm connects targets to
peripheral screen space to produce reasonably sized tiles for

all targets, including those located inside a target cluster.

Limitations in handling target clusters are not unique to snap-to-
target, but faced by all techniques based on the repartitioning of
screen space, such as Bubble Cursor [14]. Some techniques even
impact performance negatively if applied to target clusters. Inter-
actions between closely adjacent Expanding Targets cause targets
to “escape” from the user [22], resulting in a fisheye navigation
problem, as discussed by Gutwin [17].
We propose addressing the problem by expanding targets in a
goal-directed way.

a b

c d
Figure 2: Non-uniform target distributions are commonplace.
Examples: (a) yellow-page application showing a map of res-
taurants, (b) icons on a computer desktop, (c) links in a web
page, and (d) handles on geometric objects in PowerPoint™.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVI’08, May 28–30, 2008, Napoli, Italy.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

2. THE STARBURST ALGORITHM
Figure 1 illustrates the main idea of the proposed Starburst tech-
nique: While the Voronoi tessellation behind a traditional snap-
to-target expands targets directly into target tiles (Figure 1a b),
the proposed Starburst algorithm expands targets first into so-
called claim lines (Figure 1a c). Claim lines lead away from the
centers of clusters and into empty screen space. Then claim lines
expand into clickable surfaces (Figure 1d). The resulting layout is
characterized by lines escaping from the cluster center, which
gave the technique its name.
By providing targets located inside a cluster with access to empty
screen space, the Starburst algorithm is able to assign screen space
to targets that remain small if expanded using the traditional Vo-
ronoi approach. If used on a device with limited input accuracy,
such as a pen-based tablet or a touch screen-based kiosk system,
this can lead to substantial performance improvements. In our
user studies, expanding targets using Starburst led to a reduction
in error rate by a factor of up to 9 compared to target expansion
using traditional Voronoi tessellation. The proposed algorithm
thereby makes the concept of target expansion applicable to sce-
narios that have not been accessible to these techniques so far.

2.1. Walkthrough of the algorithm
Figure 3 shows how the Starburst algorithm converts a given tar-
get layout (Figure 3a) into a Starburst tile layout (Figure 3i).

a b

d e

g h

c

f

i
Figure 3: A walkthrough of the Starburst algorithm

(a) Targets to be expanded, (b) Voronoi tessellation and identi-
fication of recipients, (c-d) clustering of targets into cliques,

(e) nested rings, (f-g) claim line construction, (h) expansion of
claim lines into tiles, and (i) final removal of claim lines.

1. Identifying targets that require additional expansion. The Star-
burst algorithm begins by performing a Voronoi tessellation [12]
on the targets (Figure 3b). The algorithm then identifies small tiles
in that Voronoi layout. Tiles which have surfaces that fall below
the average tile size by a threshold (we used a factor of 5) are
tagged as tiles in need of expansion. In Figure 3b these recipients
are highlighted in orange. All other targets are tagged donors.
2. Organizing targets into cliques. Starburst manages the redistri-
bution of screen space based on what we call cliques. A clique is a
set of collocated donors and recipients. Within a clique, donors
provide the screen space used to expand recipients. The Starburst

algorithm computes cliques in three steps. First, it creates cliques
by clustering recipients based on adjacency. In Figure 3c this
results in a clique with three recipients and a clique with a single
recipient. Second, the algorithm adds all donors immediately ad-
jacent to a clique of recipients to that clique. In case a donor is
adjacent to multiple cliques the donor is added to the clique with
the smallest average tile size. In the case of Figure 3c this adds
three donors to the single-recipient clique in the top left, all others
to the three-recipient clique. Third, the Starburst algorithm adds
additional donors if they are particularly large or if they are lo-
cated in an area in which the clique lacks good donors. In order to
be included, a candidate must be adjacent to a clique and its sur-
face must significantly exceed the average tile size in that clique
(we used a threshold factor of 5). In Figure 3b, all donors were
already added in the previous step, so no further addition takes
place. Once cliques have been formed, the Voronoi tessellation
and the recipient/donor labeling is dropped (Figure 3d).
The goal of the next steps is to provide targets located on the in-
side of a clique with access to screen space in the periphery of the
clique. In order to reach the periphery, claim lines of inner targets
need to pass between outer targets and so passages between tar-
gets become potential bottlenecks. We therefore create a represen-
tation that reflects these potential bottlenecks.
3. Organizing targets into nested rings: Starburst organizes the
targets of each clique into a set of nested rings (Figure 3e). The
algorithm starts by computing the convex hull over all targets of a
clique. All targets located on that convex hull form the outer ring.
Then Starburst computes the second ring by computing a convex
hull over the remaining targets, and so on.
4. Routing claim lines. Next the algorithm creates the claim lines.
The algorithm starts with the innermost ring and connects all its
targets to the immediately enclosing ring (Figure 3f). Each claim
line is connected to the nearest edge of the outer ring that can be
reached with a straight line without intersecting the inner ring.
This guarantees that claim lines never intersect. If multiple claim
lines are connected to the same edge, the algorithm spaces them
out equidistantly; single claim lines are connected in the middle of
the ring edge. This helps balance the width of the tiles at the point
where they pass between the targets. Then the algorithm repeats
this step, i.e., all targets on the next ring plus the newly added
targets are routed to the ring another layer out. In Figure 3e, the
deepest clique has two nested rings, so a single iteration is suffi-
cient for connecting all targets to the outer ring. Now the algo-
rithm spreads the claim lines radially into the clique’s peripheral
screen space (Figure 3g).
5. Growing claim lines into tiles. In the last step, Starburst creates
the target tiles. The algorithm does this by assigning all pixels on
screen to the target with the closest claim line as shown in Figure
3h. This completes the processing and Figure 3i shows the final
result without the claim lines.

2.2. Algorithms, complexity, and performance
The overall complexity of the Starburst algorithm is O(n2) with n
being the number of targets, which allows for real-time perform-
ance with dozens of targets or several hundred targets if only a
subset of them moves.
Details on the computational complexity: Step 1: We compute the
initial Voronoi tessellation and its Delaunay triangulation [20]
using a modified Fortune algorithm in O(n log n) time [12]. We
compute the size of the Voronoi tiles in O(h), where h is number
of edges, by reusing the quad edge data structure from the Fortune
algorithm. Step 2: We compare the size of each tile with its O(h)
neighbors in O(n2) worst case time (O(n log n) average time).

Step 3: Constructing of the nested rings, known as onion-peeling,
can be performed in O(n log n) time [25], but since we already
computed the Delaunay triangulation we perform onion-peeling in
O(n) time. Step 4: In the worst case, onion-peeling generates O(n)
rings, in which case routing n claim lines through n rings requires
O(n2) time. Step 5: We perform another Fortune Voronoi tessella-
tion, this time on the claim line segments, resulting in straight line
segments and parabolic segments in O(n log n) time.

Voronoi

5
ta

rg
et

s
10

 ta
rg

et
s

15
 ta

rg
et

s

Starburst

tight clusterloose-uniform-

Voronoi

Starburst

Voronoi

Starburst

e fd e fd

h ig h ig

b ca b ca

Figure 4: Examples of Voronoi tessellations (top of each pair)
and the corresponding Starburst tessellation (bottom of each

pair) for target layouts with 5, 10, or 15 targets and clusters of
different tightness (layouts used in the user study).

2.3. Sample layouts
Figure 4 and Figure 5 show sample layouts generated using the
Starburst algorithm described above and contrasts them with the
corresponding Voronoi layouts.
Figure 4 shows Starburst layouts for nine single-cluster target
layouts, a subset of the layouts we evaluated experimentally in our

user studies. The left column of Figure 4 shows tile layouts result-
ing from uniform target distributions. The Voronoi-based ap-
proach was designed for uniform target distributions [14] and
works as expected. Tiles in the Starburst layouts are rounder, but
overall of similar quality as the Voronoi tiles. The layouts in the
center column, in contrast, contain clusters. The clusters cause the
Voronoi layouts to degrade visibly and inside-the-cluster targets
are assigned very small tiles. The Starburst layouts, in contrast,
continue to offer reasonably-sized tiles for all targets. For target
layouts containing tighter clusters this effect intensifies. The ver-
tical axis in this figure reflects the number of targets in each lay-
out. As we move down in the diagram the target count increases.
As a result, the number of inaccessible targets in the Voronoi
condition increases as well. The Starburst layouts, in contrast,
remain functional. Figure 5 shows a selection of multi-cluster
layouts. We see similar effects as in the single cluster examples.

b ca b ca
Voronoi

Starburst

Figure 5: Examples of Voronoi (top) and Starburst (bottom)
tessellations for layouts with (a) 2, (b) 3, and (c) 4 clusters.

Layouts generated by the Starburst algorithm are quite robust, i.e.,
insertion, removal, or relocation of targets impacts the tile layout
only locally. This helps users build up spatial memory when using
a Starburst layout over time.

2.4. User interface for Starburst
To outlines of Starburst tiles are irregular and therefore generally
not “guessable”. A user interface deploying Starburst therefore
needs to convey tile shapes to the user.
On devices supporting a hover state, such as table computers,
target expansion using Starburst can be presented to the user in-
teractively—on hover as shown in Figure 6a-c. (a) By default,
only screen content is visible. (b) As the pointer moves across the
screen, targets within an n-pixel radius around the pointer get
increasingly “excited” and the respective tile overlays turn
opaque. The tile under the pointer is highlighted. (c) Tiles away
from the pointer fade to transparent, yet stay opaque long enough
to allow users to tap.
Some devices, such as resistive touch screens or table top systems,
do not support a tracking state. On these systems, tile boundaries
are overlaid permanently onto screen content, rather than reveal-
ing them on hover. Tiles outlines can interfere with line-shaped
document features as shown in Figure 6d. Such interference can
often be reduced by encoding tile outlines using features not con-
tained in the underlying document (see multiblending [2]).
Note that screen devices without a tracking state support none of
the interactive expansion techniques mentioned earlier, such as
Expanding Targets. Also Bubble Cursor is not applicable to such
display systems; removal of the bubble visuals would reduce bub-
ble cursor to the underlying space partitioning algorithm, i.e., a
Voronoi tessellation.

2.5. Limitations
Similar to other target expansion techniques, Starburst helps over-
come limitations in the clickable size of targets. A potential limi-
tation of Starburst is that it tends to generate long and narrow
targets, a type of shape that can be more difficult to acquire than
rounder, wider targets [15]. In the section “Improving space allo-
cation”, we describe extensions to the algorithm that result in
wider target shapes.
What remains are limitations based on the visual size of target
layouts. Larger and tighter clusters result in thinner pathways at
the point where claim lines pass the rings. When these pathways
get so thin that they are hard to visually trace or when their thick-
ness reaches screen resolution, some targets cannot be expanded
anymore and the Starburst algorithm has reached its limit. Fortu-
nately, as our user studies indicate, this point is reached much
later than the motor space limits faced by Voronoi-based ap-
proaches.

a b

c d
Figure 6: (a-c) on-hover exploration and (d) permanent
overlay of Starburst tessellation using an emboss effect

3. RELATED WORK
Starburst is related to target acquisition and labeling.

3.1. Targeting and target expansion
In order to help users acquire small targets, researchers have pro-
posed expanding targets in various ways.
Expansion of targets in motor space: researchers have proposed
slowing down the pointer motion on and around small targets
(e.g., sticky icons [30], also suggested by [29], semantic pointing
[9]). Such adjustments of control display ratio (or cd ratio) in-
crease the target’s size in motor space. Object pointing [16] sug-
gests removing space between targets altogether, letting users
jump between targets.
Approaches based on cd ratio adjustment require users to cross
the target for the cd ration enhancement to become active [3].
Researchers have therefore proposed magnetism [5] and gravity
[8]. Snap-and-go [3] uses invisible guides that direct the user’s
motion while the actual propulsion still comes from the user.
On touch and pen-based systems, motor space enhancements are
typically applied by using take-off selection [24]. The 1:1 map-
ping of these screen devices is used only to determining the initial
contact position; then users iterate under a local cd ratio adjust-
ment and commit by lifting their pen or finger off the screen
(high-precision touch screen [26]). Benko et al. allow users to
control cd-ratio manually using a second finger or the non-
dominant hand [7].

Expansion of targets in visual and motor space: Some researchers
have proposed manual expansion of targets using an intermitted
zoom step [1, 26]. In order to apply target expansion to touch and
pen-based systems with land-on selection [24], the motor space
size of targets needs to be increased permanently. Expanding
targets, proposed by McGuffin and Balakrishnan, refers to an
expansion of the target in visual and motor space as the pointer
approaches it [22]. For an isolated target, the motor space of the
target is determined by the expanded space and McGuffin et al.
found that the targeting performance is largely determined by the
size of that expanded state [21].
For clusters of adjacent targets, however, target expansion in vis-
ual space causes targets to push each other away [21]. Although
the visuals of each target expand fully, the proximity of the adja-
cent targets affects a target’s ability to expand in motor space. In
tightly packed clusters, no motor space expansion can take place.
Expansion of cursor vs. expansion of targets: To prevent these
problems, researchers have looked at ways to expand targets
without pushing other targets away. Bubble cursor is one such
solution [14]. It shows an on-hover bubble around the pointer that
varies in size, such that it contains the closest target. Bubble cur-
sor has been applied to a variety of target acquisition techniques,
such as the tractor beam [23]. There are three different ways of
looking at bubble cursor. When focusing on its effect on motor
space, bubble cursor divides screen space up resulting in a Vo-
ronoi diagram. The second way of looking at bubble cursor is to
consider it a snap-to-target mechanism. And third, it can be con-
sidered an area cursor (sticky icons [30], also prince technique
[18]) of adaptive size. With respect to the underlying motor space
properties all three viewpoints are equivalent, although each per-
spective inspires a different visual user interface.

3.2. Target acquisition as a labeling problem
Another approach to associating small targets with larger motor
space areas is to create a layer of handles—one handle for each
target—that is overlaid onto the actual document content. Many
programs, such as MS PowerPoint™ and Adobe Illustrator™ use
little white circles to represent corners of graphical primitives that
would otherwise measure only a single pixel (Figure 7a). In case a
primitive is too small to fit all handles (Figure 7b, c), PowerPoint
drops some of them, and finally (Figure 7d) it decouples the han-
dles from the actual object in order to prevent handles from over-
lapping. Despite the decoupling, the association between handle
and target is clear because of their proximity. In the case of multi-
ple objects (Figure 7e), handles do overlap and once more it is
difficult to acquire them.

a b c d e
Figure 7: Resize handles in MS PowerPoint™

The idea of decoupling handles from the target can be pushed
further. While we are not aware of any such research specifically
designed to help users acquire small targets, a lot of research has
been done on labeling screen objects (e.g., [19]). Excentric labels
[11] assign labels to an entire cluster of small objects by using an
explosion-drawing-like display (Figure 8). To avoid overlap be-
tween labels, they are placed at a distance from the actual targets.
To associate labels and targets, this approach relies on lines and in
some cases also color. While the purpose of the labels is to hold a
piece of text or an icon explaining the referenced object, one
could imagine using external labels for the purpose of making the
associated object clickable.

Figure 8: Excentric labels [11]

A potential limitation of this approach is that the lines produce
clutter. This can make it hard for users to locate a label belonging
to a particular target. Bell et al. propose an algorithm that mini-
mizes connecting lines by placing labels onto the actual object
whenever the size and shape of the target permit it [6]. The use of
such internal labels can reduce visual search as targets and label
are associated by proximity, while users need to trace a line in
order to locate an external label.
Following this analogy, layouts produced by the Voronoi algo-
rithm consist exclusively of internal “labels”, at the expense of
offering no control over their size. The Starburst algorithm, in
contrast, keeps internal “labels” only if they are large enough.
Otherwise it expands into an external “label”. Unlike external and
excentric labels, however, Starburst creates lines, tiles, and targets
in the same plane, so labels never occlude targets. In that sense,
Starburst shares some properties with circuit board routing [10].

4. DESIGN DISCUSSION
In this section, we give a brief overview of the design alternatives
we explored and discuss their strengths and limitations. Our first
two approaches were based on refining Voronoi tessellations.

4.1. Refining Voronoi by moving boundaries
Figure 9 shows a Voronoi layout and a modification obtained by
moving and rotating a tile boundary. While this approach allowed
for certain layout improvements, the use of straight tile bounda-
ries turned out to be a major limitation, because many target lay-
outs require non-straight boundaries (see, for example, the center
areas of the layouts generated by Starburst in Figure 4).

a b
Figure 9: Boundary adjustment approach: (a) Voronoi Tessel-
lation; (b) expansion of the tile in the top left corner by moving

and rotating its boundary.

4.2. Refining Voronoi by reassigning pixels
To address this limitation, we explored algorithms that repre-
sented screen space as pixels, rather than tile boundaries. Cellular
automata and pixel rewriting allow creation of a rich spectrum of
shapes [13]. The high degree of flexibility, however, made it dif-
ficult to control tile growth and to direct target growth towards
available space. We often obtained inefficient shapes (Figure 10c)
and improving one tile often came at the expense of making an-
other tile significantly worse (Figure 10d).

4.3. Claim lines
Based on these insights, we started looking for an algorithm that
would offer flexibility and control. Claim lines provide tiles with

a much-needed skeleton—a concept well understood in computer
graphics [28]. That skeleton allowed us to direct target growth
towards available space and prevent uncontrolled expansion. Yet,
the resulting target tiles were not limited to straight edged or con-
vex shapes.

a b c d
Figure 10: Pixel rewriting approach: (a) Voronoi tessellation;

(b) expansion of the top left target using pixel rewriting;
(c, d) further expansion leading to undesirable target shapes.

We went through several design iterations to determine a claim
line skeleton that would offer enough flexibility to avoid bottle-
necks yet be simple enough to allow for good control.
Our first attempt used single-segment claim lines, which it created
by drawing a straight line from a common “center point” located
inside the cluster through the individual targets. This approach
turned out to be too limited and long strips of targets resulted in
inefficient space usage.
To address these shortcomings, we switched to multi-segment
lines. We tried to avoid bottlenecks by making claim lines repel
each other, yet that made it difficult to direct claim lines towards
available screen space.
Our final version, the nested ring approach, finally, reduced the
number of line segments to what was absolutely necessary and
offered a good handle on bottlenecks. This resulted in cleaner
layouts, faster computation, and the desired degree of control.

5. IMPLEMENTATION
Figure 11 shows our Starburst test environment. It allows placing
targets and generating tile layouts using a variety of algorithms. It
was implemented using the .NET WinForms framework and runs
on Microsoft Windows XP Tablet PC Edition.

Figure 11: The Starburst test environment for Tablet PC

6. USER STUDIES
To objectively evaluate the performance of the Starburst algo-
rithm, we conducted two controlled experiments comparing Star-
burst with traditional Voronoi target expansion.
The goal of the first experiment was to verify that our technique
indeed reduces the motor skills required to select clustered targets.
Voronoi and Starburst both make use of the entire screen space—
the average size of generated tiles is therefore the same. Starburst

does not increase tile sizes compared to Voronoi, but balances
tile sizes; its median target size is higher that Voronoi’s, not its
mean. On the flipside, as discussed earlier, targets generated by
Starburst tend to be longer and thinner. We were wondering how
the two effects would play out against each other. The first study
investigated this by highlighting the entire target tile (Figure 12a).
After finding a very strong effect in the first study (a reduction of
error by a factor of nine) we conducted a second study. This time
we looked at a more realistic scenario simulating a user encoun-
tering a target layout for the first time or who works with a layout
undergoing perpetual change. How effectively would users ac-
quire targets now? We implemented this scenario by highlighting
the target only, not the tile, so that users had to visually examine
layouts for every trial to determine where to tap (Figure 12b).

start
button

target tile

target

a

b

study 1

study 2

Figure 12: Participants tapped the start button and then the

tile associated with the target. (a) In study 1, the entire target
tile was highlighted, (b) in study 2 only the target itself.

7. USER STUDY 1
The participants’ task in the first study was to acquire targets with
a pen on a tablet computer (Figure 12). Target acquisition was
supported by expanding all targets in the target layout into a
space-filling layout of tiles. Participants could acquire a target by
acquiring any part of the associated tile. As mentioned above, the
entire tile associated with the target was shaded red (Figure 12a).
Our main hypothesis was that participants would acquire with less
errors if layouts were generated using Starburst.

7.1. Interfaces
There were two interface conditions. In the Starburst condition,
target tile layouts were generated using the algorithm described at
the beginning of this paper. In the Voronoi condition, target tile
layouts were generated using the traditional Voronoi approach.
Both interfaces provided permanently visible tile boundaries, i.e.,
a set of black lines as shown in Figure 12. We chose this interface
style, because it is available on all devices—unlike interface styles
relying on hover.

7.2. Target layouts
Target layouts measured 256 x 256 pixels and 2” x 2” (5 x 5 cm)
on screen. To keep the number of trials manageable and since
multi-cluster layouts are structurally similar (Figure 5) we used
uniform and single-cluster layouts only. Figure 4 show examples
for each of the nine types of target layouts used in the study: each
target layout contained 5, 10, or 15 targets; targets were organized
either in a uniform distribution (uniform), in a normal distribution
with standard deviation of 32 pixels (loose), or in a normal distri-
bution with standard deviation of 8 pixels (tight). For each of the
nine layout types we randomly generated 5 target layouts. Each
participant completed each layout using each of two interfaces.
This resulted in 3 target counts x 3 densities x 5 layouts x 2 inter-
faces = 90 layouts.

7.3. Task
The participants’ task was to acquire targets using the pen. Each
trial proceeded as follows. (1) The current target was highlighted
in gray and the start button turned red as shown in Figure 12. (2)
Participants tapped the start button (100 x 256 pixels, 0.8” x
2”/2cm x 5cm) located right of the target layout. This was ac-
knowledged with a “click” sound and started the timer for that
trial. (3) Participants acquired the highlighted target by tapping
anywhere within its tile using the pen. This stopped the timer.
Success/failure was confirmed using auditory feedback.
While participants acquired one target per trial, performance was
measured on a per-layout basis. A per-target comparison did not
make sense, because target sizes and shapes of the tiles in a layout
were not independent from each other; adding space to one target
to make it easier to acquire came at the expense of making another
one smaller and thus harder to acquire.
This meant that participants needed to perform 10 times more
target acquisitions for the same number of data points than in a
normal target acquisition study. In order to keep the number of
repetitions manageable, distance and angle of the target were not
varied in this experiment. Instead we used the aforementioned
start button located at a fixed position. While the start button
placement could impact targeting times of individual targets, its
effect balanced out across entire layouts.

7.4. Procedure
Each participant acquired every target of the 90 tile layouts once,
i.e., there were 45 target layouts, each one tessellated differently
for each of the two interface conditions. Each participant therefore
performed a total of 3 levels of target counts (5, 10, or 15 targets)
* 3 densities (uniform, loose, tight) * 5 layouts * 2 interfaces =
900 trials. To minimize learning and ordering effects, the order of
all 900 trials was randomized, so that in the general case the entire
target layout changed from trial to trial. Overall, the user study
took about 20 minutes per participant.

7.5. Apparatus
Participants performed all tasks using a Toshiba Portégé M200
Tablet PC, with a 12.1” inch LCD monitor running the Microsoft
Windows XP Tablet PC Edition operating system. The screen
measured 7½” x 9¾” (19cm x 25cm), offered 1400 x 1050 pixel
resolution (140dpi), and was used in portrait orientation. Partici-
pants performed all interaction using a pen. The tablet keyboard
was hidden (“slate mode”). The tablet was placed on a table, but
participants were allowed to hold the tablet in the lap instead, if
they preferred (Figure 12). The experimental application was
implemented using the .NET WinForms framework.

7.6. Participants
12 volunteers (10 male) between the ages of 20 and 40 were re-
cruited from our institution. Each one received a lunch coupon for
our cafeteria as a gratuity for their time. All had experience with
graphical user interfaces, TabletPC, and pen input. Nine partici-
pants were right handed. All had normal or corrected to normal
vision and normal color vision.

7.7. Hypotheses
We had the following three hypotheses:
(H1) Participants would acquire target layouts faster and with
fewer errors for the clustered target layouts (loose and tight condi-
tions) when using the Starburst interface.
(H2) The performance benefit of the Starburst condition would
increase with the number of targets in a layout. The reason is that
a higher target count would cause more targets to be enclosed
inside clusters in the Voronoi condition.

(H3) The performance benefit of the Starburst condition would be
greater in the tight condition. In the Voronoi condition, the tighter
packing would make tiles of targets located inside a cluster even
smaller.
We did not expect any performance benefits for the Starburst
interface in the uniform layout conditions because neither of the
techniques should produce any small targets.

7.8. Results
Performance was measured in error rates and targeting times for
each condition.
7.8.1. Error rates
We aggregated selection errors across all 5 layouts per condition
to compute an error metric for each condition. We then performed
a 3 (TargetCount) × 3 (Density) × 2 (Technique) within subjects
analysis of variance. We found significant main effects for all
three variables. For TargetCount (F(2,22)=92.5, p<<0.001), accu-
racy decreased as the number of targets increased. Similarly for
Density (F(2,22)=158.4, p<<0.001), as the density increased, so
did the error rate. Finally, for Technique (F(1,11)=272.1,
p<<0.001), Voronoi was associated with significantly higher error
rates than Starburst (14% vs. 2% error).
In addition, all interactions tested were significant: TargetCount x
Density, F(4,44)=24.1, p<<0.001; TargetCount x Technique,
F(2,22)=51.2, p<<0.001; Density x Technique, F(2,22)=204.8,
p<<0.001; and TargetCount x Density x Technique, F(4,44)=12.9,
p<<0.001. Figure 13 illustrates all the error rates for each tech-
nique and all display conditions. Post hoc paired t-tests were per-
formed comparing each technique at each condition and signifi-
cant differences are denoted by “*” (Bonferroni adjustment for
multiple tests, p<0.005).

5 10 15 5 10 15 5 10 15
0

5

10

15

20

25

30

35

40

45

Er
ro

r r
at

e
(%

 ±
 S

EM
) Starburst

Voronoi

Uniform Loose Tight

∗

∗

∗

∗

∗

∗

Figure 13: Error rates over layout types (+/- std error of mean)

7.8.2. Target acquisition times
Before analyzing target acquisition times, outliers were removed
from the analysis based on a heuristic of any acquisition longer
than 2 seconds (this is well over 3 standard deviations from the
mean for a given condition). A total of 55 out of 10745 trials were
removed from the data (45 from the Voronoi conditions).
As with error rates, for time analyses we collapsed target acquisi-
tion times across all 5 layouts per condition, computing the me-
dian target acquisition time for each condition. We performed a 3
(TargetCount) × 3 (Density) × 2 (Technique) within subjects
analysis of variance for acquisition time. We found significant
main effects for all three variables. For TargetCount
(F(2,22)=244.4, p<<0.001), acquisition time increased as the
number of targets increased. Similarly for Density (F(2,22)=76.3,
p<<0.001), as the density increased, so did target acquisition time.
Finally, for Technique (F(1,11)=65.9, p<<0.001), Starburst was
significantly faster than Voronoi.
In addition, all interactions tested were significant: TargetCount x
Density, F(4,44)=20.7, p<<0.001; TargetCount x Technique,

F(2,22)=11.0, p<0.01; Density x Technique, F(2,22)=47.5,
p<<0.001; and TargetCount x Density x Technique, F(4,44)=7.8,
p<0.01. Figure 14 illustrates targeting times for each technique
and all display conditions. Post hoc paired t-tests were performed
comparing each technique at each condition and significant dif-
ferences are denoted by “*” (Bonferroni adjustment for multiple
tests, p<0.005).

5 10 15 5 10 15 5 10 15
0

100

200

300

400

500

600

A
cq

ui
si

tio
n

Ti
m

e
(m

s
±

S
E

M
)

Starburst

Voronoi

Uniform Loose Tight

∗∗ ∗

∗
∗

∗

Figure 14: Targeting times over layout types (+/- standard

error of the mean).
7.9. Discussion
In summary, the study results support all three hypotheses. Par-
ticipants acquired tiles layouts generated using Starburst faster
and with a substantially lower error rate than tiles generated by
the Voronoi conditions. This supports our hypothesis that the
improved balancing of target sizes outweighs the drawback result-
ing from the degeneration of tile shapes. Tighter clusters and more
targets increased the gap in performance.

8. USER STUDY 2
As mentioned earlier, the purpose of the second study was to in-
vestigate the more realistic scenario where users encounter a tar-
get layout for the first time. The second study was identical to the
first, except:
Interfaces: only the target itself was highlighted, but not the cor-
responding tile, so that users had to visually examine the layout to
determine where to click. Since targets were very small, they were
also provided with a pale red glow to make them easier to locate,
as shown in Figure 12b. As before, targets were revealed upon
completion of the previous trial. All participants tapped start in
immediate succession to completing a trial and did not inspect
layouts before tapping start.
Additional density condition: We only tested the 5 and the 10
target conditions, but not the 15 target conditions (Figure 5). Par-
ticipants therefore now performed 2 target counts x 3 densities x 5
layouts x 2 interfaces = 60 layouts.
Participants: 6 participants (5 male); all with GUI experience; 2
Tablet PC users and pen input experience; 5 right handed and one
left handed. All had normal or corrected to normal vision and
normal color vision.
Hypotheses: As in the first study, we expected to see a benefit in
error rate. Since the visual analysis of the Starburst layout would
take time, we did not expect to see a benefit in task time though.

8.1. Results
Performance was measured in error rates and targeting times for
each condition.
8.1.1. Error rates
Analyses for Study 2 were nearly identical to Study 1. While the
accuracy rates tended to be slightly lower (reflecting the increased
task difficulty), the pattern was the same. We performed a 2 (Tar-
getCount) × 3 (Density) × 2 (Technique) within subjects analysis
of variance. We found significant main effects for all three vari-
ables. For TargetCount (F(1,5)=42.9, p<0.001), accuracy de-

creased as the number of targets increased. Similarly for Density
(F(2,10)=97.9, p<<0.001), as the density increased, so did the
error rate. Finally, for Technique (F(1,5)=37.6, p<0.002), Voronoi
was associated with significantly higher error rates than Starburst
(10% vs. 4% error).
Unlike study 1, only 2 interactions were significant: TargetCount
x Density, F(2,10)=17.8, p<0.001; and Density x Technique,
F(2,10)=39.6, p<<0.001. Figure 15 illustrates all the hit rates for
each technique and all display conditions. Post hoc paired t-tests
were performed comparing each technique at each condition and
significant differences are denoted by “*” (Bonferroni adjustment
for multiple tests, p<0.008).

5 10 5 10 5 10
0

5

10

15

20

25

30

E
rro

r r
at

e
(%

 ±
 S

E
M

) Starburst

Voronoi

Uniform Loose Tight

∗

∗

Figure 15: Error rates over layout types (+/- std error of mean)

8.1.2. Target acquisition times
As expected, the time for target acquisition was generally longer
than in study 1, reflecting the greater difficulty of the task. We
performed a 2 (TargetCount) × 3 (Density) × 2 (Technique)
within subjects analysis of variance for acquisition time. We
found significant main effects for all three variables. For Target-
Count (F(1,5)=18.3, p<0.001), acquisition time increased as the
number of targets increased. Similarly for Density (F(2,10)=6.49,
p<0.02), as the density increased, so did target acquisition time.
Finally, for Technique (F(1,5)=10.7, p<0.02), Starburst was sig-
nificantly faster than Voronoi.
No interactions were significant. Figure 16 illustrates targeting
times for each technique and all display conditions. As above,
post hoc paired t-tests were performed comparing each technique
at each condition and significant differences are denoted by “*”
(Bonferroni adjustment for multiple tests, p<0.008).

5 10 5 10 5 10
0

100

200

300

400

500

600

700

Ac
qu

is
iti

on
 T

im
e

(m
s

±
SE

M
)

Starburst

Voronoi

Uniform Loose Tight

∗

Figure 16: Targeting times over layout types (+/- standard

error of the mean)

8.2. Discussion
Also the second study results support our hypotheses. While the
visual analysis of the Starburst layout resulted in longer task times
and higher error rates in both interface conditions compared to the
first study, the Starburst layout still outperformed the Voronoi
layout on both measures.

9. IMPROVING SPACE ALLOCATION
The Starburst algorithm, as described throughout this paper, im-
proves target tile layouts by reallocating screen space from donors
to recipients. While the algorithm delivers good results for the
average case, it can lead to suboptimal results if the supply of
screen space is distributed unequally around a cluster. In the ex-
ample shown in Figure 17a, for example, the five claim lines in
the bottom left access only limited amounts of screen space. In the
following, we present an extension of our algorithm that causes it
to take the availability of screen space into account. The extension
replaces step 4 of the original algorithm as follows.
4a. Locate available screen space. To probe space availability
this algorithm casts rays from the outer ring into the periphery,
intersects them with the clique boundaries (dashed and dotted
lines in Figure 17b), and measures the length of the ray. Sectors
that are too “shallow” are excluded from the following space allo-
cation steps (finely dotted lines in Figure 17b).
4b. Place claim line endpoints. The algorithm places claim line
endpoints into the sectors marked as available. For a reasonably
small number of targets per clique, such as 20, the algorithm parti-
tions screen space radially as shown in Figure 17c.
4c. Route claim lines between targets and endpoints. The algo-
rithm descends claim lines from the endpoints to the closest seg-
ment of the outer ring. Then it flips pairs of connections until
claim lines do not intersect each other anymore. It repeats this
step for all remaining ring layers.

a b

c d

a b

c d
Figure 17: (a) The 5 dashed claim lines have limited access to
screen space. The extension (b) locates available screen space,
(c) places claim line endpoints into the available screen space,

and then (d) routes claim lines from endpoints to targets.

Figure 18 juxtaposes a tile layout generated using the basic Star-
burst algorithm with the corresponding layout produced by the
extended version.

a b
Figure 18: (a) A tile layout generated using the basic Starburst

method and (b) using the extended version

For clusters with more than 20 targets, spreading claim line end-
points along a single arc produces very thin tiles that can be hard
to acquire [15]. To avoid this, our algorithm handles large num-
bers of endpoints by laying them out in two or more layers as
shown in Figure 19a (this example uses the 8 targets layout from
Figure 18 to allow juxtaposing the resulting layouts). When grow-
ing claim lines into tiles in step 5, endpoints are given additional
“attraction”. This causes tiles to inflate around their endpoints,
which provides tiles with a “handle”, making them easier to ac-
quire. Figure 19b shows the resulting tile layout.

a b
Figure 19: (a) Organizing claim line endpoints in multiple

layers (b) helps thicken targets in this tile layout.

10. CONCLUSIONS
In this paper, we presented Starburst, an algorithm that extends
the concept of target expansion to target layouts that contain clus-
ters. Our user studies support our claims that the presence of tar-
get clusters limits the applicability of Voronoi-based target expan-
sion techniques and demonstrated substantial performance bene-
fits for the proposed Starburst technique.
As future work we plan to extend the algorithm to allow it to ex-
pand starting with arbitrary target shapes, such as buttons in
graphical user interfaces. We also plan to experimentally evaluate
Starburst’s on-hover user interface, e.g., by comparing it against
bubble cursor.

ACKNOWLEDGMENTS
We thank Heather Thorne, Raman Sarin, Tovi Grossman, and
Merrie Morris for their comments on earlier drafts of this paper.
Thanks to Michael McGuffin and Tovi Grossman for allowing us
to use demo sequences of expanding targets and bubble cursor in
our demo video.

REFERENCES
1. Albinsson, P.-A. and Zhai, S. High precision touch screen

interaction. In Proc CHI’03, pp. 105-112.
2. Baudisch, P. and Gutwin, C. Multiblending: displaying over-

lapping windows simultaneously without the drawbacks of al-
pha blending. In Proc. CHI’04, pp. 367-374.

3. Baudisch, P., Cutrell, E., Hinckley, K., and Eversole, A.
Snap-and-go: Helping Users Align Objects Without the Mo-
dality of Traditional Snapping. In Proc. CHI’05, pp. 301-310.

4. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M.,
Tandler, P. Bederson, B., and Zierlinger, A. Drag-and-Pop
and Drag-and-Pick: Techniques for Accessing Remote Screen
Content on Touch- and Pen-operated Systems. In Proc. Inter-
act’03, pp. 57-64.

5. Beaudouin-Lafon, M. & Mackay, W. Reification, Polymor-
phism and Reuse: Three Principles for Designing Visual Inter-
faces. In Proc. AVI’00, pp.102–109.

6. Bell, B., Feiner, S., and Höllerer, T. View Management for
Virtual and Augmented Reality. In Proc. UIST '01, 101-110.

7. Benko, H., Wilson, A., and Baudisch, P. Precise Selection
Techniques for Multi-Touch Screens. In Proc. CHI’06, pp.
1263-1272.

8. Bier, E. and Stone, M. Snap dragging. In Proc. SIG-
GRAPH’86, pp. 233–240.

9. Blanch, R. Guiard, Y., Beaudouin-Lafon, M. Semantic Point-
ing: Improving Target Acquisition with Control-Display Ratio
Adaptation. In Proc. CHI’04, pp. 519–526.

10. Dion, J. (1987). Fast printed circuit board routing. ACM
Press New York, NY, USA.

11. Fekete, J.-D., and Plaisant, C. Excentric labeling: dynamic
neighborhood labeling for data visualization. In Proc.
CHI’99, pp. 512–519.

12. Fortune, S. A sweepline algorithm for Voronoi diagrams. In
Algorithmica 2(1):153-174, March 1987.

13. Furnas, G.W. and Qu, Y. Shape manipulation using pixel
rewrites. In Proc. Visual Computing 2002 (VC'02), published
in Proc. DMS2002, pp. 630-639.

14. Grossman, T. and Balakrishnan, R. Bubble cursor: Enhancing
target acquisition by dynamic resizing of the cursor’s activa-
tion area. In Proc. CHI 2005, p. 281-290.

15. Grossman, T., and Balakrishnan, R. A probabilistic approach
to modeling two-dimensional pointing, TOCHI Volume 12, Is-
sue 3 (September 2005), p. 435-459.

16. Guiard, Y., Blanch, R., and Beaudouin-Lafon, M. Object
pointing: A complement to bitmap pointing in GUIs. In Proc.
GI’04, pp. 9-16.

17. Gutwin, C. Improving Focus Targeting in Interactive Fisheye
Views. In Proc. CHI’02, pp. 267–274.

18. Kabbash, P. and Buxton, W. The prince technique: Fitts' law
& selection using area cursors. In Proc. CHI’95, pp. 273–279.

19. Kakoulis, K. and Tollis, I. Intl. Journal of Computational
Geometry and Applications 13(1):23–59. (2003).

20. Lischinski D. Incremental Delaunay triangulation. In Graph-
ics Gems IV. Academic Press, pp. 47–59 (1994).

21. McGuffin, M, and Balakrishnan, R. Fitts' Law and Expanding
Targets: Experimental Studies and Designs for User Inter-
faces. TOCHI (12)4:388-422, Dec. 2005.

22. McGuffin, M., and Balakrishnan, R. Acquisition of Expand-
ing Targets. In Proc. CHI’02, pp. 57-64.

23. Parker, J., Mandryk, R., Nunes, M., and Inkpen, K. Improving
target acquisition for pointing input on tabletop displays. In
Proc. INTERACT 2005, pp 80-93.

24. Potter, R. L., Weldon, L. J., and Shneiderman, B. (1988).
Improving the accuracy of touch screens: an experimental
evaluation of three strategies. In Proc. CHI’88, pp. 27-32.

25. Preparata, F., Shamos, M. 1985. Computational Geometry: An
Introduction. Texts and Monographs in Computer Science.
Springer-Verlag, New York

26. Ramos, G., Cockburn, A., Beaudouin-Lafon, M. and
Balakrishnan, R. Pointing Lenses: Facilitating Stylus Input
through Visual- and Motor-Space Magnification. In Proc.
CHI’07. pp. 757 – 766.

27. Sears, A. and Shneiderman, B. (1991). High precision touch-
screens: design strategies and comparisons with a mouse. Int.
J. Man-Mach. Stud. 34(4):593-613.

28. Sederberg, T. and Parry, S. Free-form deformation of solid
geometric models. In Proc. SIGGRAPH 86, pp. 151-160.

29. Swaminathan, K. and Sato, S. (1997) Interaction design for
large displays. In Interactions 4(1):15–24.

30. Worden, A., Walker, N., Bharat, K and Hudson, S. Making
Computers Easier for Older Adults to Use: Area Cursors and
Sticky Icons. In Proc. CHI ’97, pp. 266–271.

