

The Springboard: Multiple Modes in One Spring-loaded Control
Ken Hinckley1, Francois Guimbretiere2, Patrick Baudisch1,

Raman Sarin1, Maneesh Agrawala1, Edward Cutrell1

1Microsoft Research, One Microsoft Way, Redmond, WA 98052
2University of Maryland, A.V. Williams Building, College Park, MD 20742.

{kenh, baudisch, ramans, cutrell}@microsoft.com; francois@cs.umd.edu; maneesh@cs.berkeley.edu

ABSTRACT
Modes allow a few inputs to invoke many operations, yet if
a user misclassifies or forgets the state of a system, modes
can result in errors. Spring-loaded modes (quasimodes)
maintain a mode while the user holds a control such as a
button or key. The Springboard is an interaction technique
for tablet computers that extends quasimodes to encompass
multiple tool modes in a single spring-loaded control. The
Springboard allows the user to continue holding down a
nonpreferred-hand command button after selecting a tool
from a menu as a way to repeatedly apply the same tool.
We find the Springboard improves performance for both a
local marking menu and for a non-local marking menu
(“lagoon”) at the lower left corner of the screen. Despite the
round-trip costs incurred to move the pen to a tool lagoon, a
keystroke-level analysis of the true cost of each technique
reveals the local marking menu is not significantly faster.

Author Keywords
Modes, tablet, pen, marking menus, keystroke-level model

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Input

INTRODUCTION
Modes are all about using one input device to do multiple
things. Most of the relevant literature on modes dates from
the era of keyboard-only interfaces and text editors that
were infamous for cryptic key combinations, such as vi and
emacs [18], that could trap unsuspecting users in seemingly
inescapable modes. The essence of the problem was that all
system functions were invoked using the same set of keys
that served primarily for text entry. The situation led Tesler,
in a classic 1981 Byte article, to lament Don’t mode me in!
to describe his feeling of entrapment by modes [22]. Such
problems seem antiquated, yet we now face pen-operated
devices that lack a keyboard. All functions are invoked
using the same pen that serves primarily for inking on the
screen. The resulting modal traps seem all too familiar.

For tablet computers, common modes include pen/inking
mode, gesture mode, selection mode, eraser mode,
highlighter mode, panning and zooming modes, and object

creation modes (e.g. drag out a rectangle or ellipse). Such
modes plague many note-taking and drawing applications,
including Windows Journal, OneNote, Alias Sketchbook,
and even the classic MacPaint interface. These programs
all exhibit a strong default mode (inking or drawing) where
users are expected to spend most of their time, but users
also need frequent but temporary access to tool modes.
These applications have an iCi task structure, where i is the
default inking mode and C is the temporary command
mode. Quasimodes, also known as spring-loaded modes,
are well suited to such iCi tasks [20,21]. But quasimodes
only provide a spring-loaded control for one mode. It is not
practical to have a button for all of the modes listed above;
even if it were, hitting the wrong button would undermine
the benefits of providing a quasimode for each tool [10]. As
a result, designers must use quasimodes sparingly.

Fig. 1. Illustration of the Springboard using a tool lagoon with
icons. (a) Inking is the default. (b) The user holds down a
nonpreferred-hand button to call up the lagoon, and taps the
hiliter tool. (c) Pen strokes apply the hiliter as long as the user
holds the button. (d) Releasing the button returns to inking.

To address this, we propose the Springboard as a way to
extend a quasimode associated with a single spring-loaded
control to multiple modes. For clear illustration, Fig. 1
shows a version of the Springboard design with icons, but
the implementation we study in detail uses marking menus.
To use the Springboard, the user presses and holds a
nonpreferred-hand button (COMMAND) located on the
screen bezel. The user then makes a menu selection to
choose the desired tool mode. The key difference compared
to quasimodes is that as long as the user continues to hold
COMMAND, he can apply the selected tool mode by making
one or more pen strokes. Releasing COMMAND turns off the
tool mode, and returns the application to its default mode.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

The Springboard can be applied to a “local” menu that the
user activates from the current pen position, or to “remote”
menus that lie at the edges of the screen. For the local
design, we implemented a marking menu that was triggered
by stroking while pressing a nonpreferred-hand button [14].
For the remote design, we implemented a marking menu
that was triggered from a “tool lagoon” [6] in the lower left
corner. In this case, the location of the pen stroke already
signals that the mark is a command, so the Springboard
uses the COMMAND button press to keep the selected tool
mode active. This button press is an extra cost, but it might
save time if it can eliminate round trips.

We contribute the Springboard as a design option for mode
switching. We also contribute an experimental paradigm
for rigorous quantitative analysis of mode and command
selections. Our paradigm contrasts different interaction
patterns to operationalize in-situ uses of a technique, and
uses a subtraction methodology [5,14] to isolate physical
articulation costs via a keystroke-level model. This
paradigm ensures that we can identify any extra costs over
the full life-cycle of a mode switch. Our analysis reveals
that on a tablet-sized device, the local marking menu was
not significantly faster than a marking menu on the tool
lagoon. Interface designers can use our models and
experimental approach to extend these results to variations
on the specific interface designs that we tested, or to reason
about design tradeoffs in other similar inking/command
tasks that naturally arise in pen gesture interfaces.

RELATED WORK
A user commits a mode error when he or she fails to
comprehend the current state of the system and thus
performs an action which is incorrect given the true state of
the system [17]. Quasimodes may reduce the potential for
mode errors by helping users maintain awareness of the
system’s state. Sellen et al. [21] show that holding a foot
pedal reduces errors in a text editor, but a latching foot
pedal that holds its state for the user does not. This suggests
the user’s active maintenance of muscle tension is the
crucial quality of a quasimode. For example, holding SHIFT
to temporarily capitalize letters is a quasimode, but CAPS
LOCK is not because tapping the key persists the mode.
Another good example of a quasimode is the panning tool
in Photoshop. The user presses and holds the spacebar, and
can then click and drag multiple times to pan an image;
releasing the spacebar returns to the prior mode. Note that
the spacebar accesses one and only one temporary function.

Tracking menus are menus that follow the pen [6]. Alias
Sketchbook 2.0 activates a pan/zoom tracking menu when
the user holds the spacebar. The user may pan by quickly
“pawing” [6] at the screen (just as in Photoshop), or may
instead target the center of the tracking menu to zoom.
Releasing the spacebar dismisses the tracking menu and
returns to drawing mode. Thus the tracking menu offers a
quasimode with one other rapid-access function.

Marking menus use the direction of a pen stroke to select
commands [13]. Several systems allow extension of the
stroke to transition from command selection to a dragging

mode specific to the selected command [8,9,19]. In all of
these systems, the pen must stay in continuous contact with
the screen: the dragging phase ends as soon as the user lifts
the pen. The Springboard enables the user to draw multiple
strokes in the tool mode by continuing to hold the button,
rather than forcing a single stroke syntax [1,24].

The Springboard shares some properties of the hotbox in
Alias Maya [12]. The user activates a hotbox by pressing
and holding the spacebar; the hotbox disappears when the
user releases the spacebar. The hotbox offers multiple
marking menus that the user can select from; the user can
also issue multiple commands in a single posting. The
Springboard extends the hotbox in one critical dimension:
when the user marks to select a command, the user keeps
holding the button to apply the resulting tool mode as many
times as desired by stroking the pen.

There are several strategies to improve command
efficiency. Some applications persist a mode if the user
presses SHIFT while clicking on an icon. The Xerox Star
had an AGAIN key, and some modern keyboards have a
REDO key [16]. These keys repeat the last command.
Pressing CTRL while clicking on a color chip in Microsoft
Paint lets users reapply that color whenever they hold
CTRL; releasing CTRL returns to the prior color. Unlike
Paint, the Springboard emphasizes and deemphasizes the
visual representation of the interface with the COMMAND
button press, and generalizes the approach to tool modes.
Also, our experiment is the first to study this design option
and demonstrate that it offers significant advantages.

Dillon et al. [5] assess the true cost of command selection.
Their study compares a baseline task without commands to
a compound task with command selections; subtracting the
two yields the true cost. We extend this subtraction
methodology by contributing a new methodology that
leverages keystroke-level analyses to carefully tabulate all
costs associated with mode selection. This approach allows
us to show that locally-activated marking menus do not
benefit tool mode switching despite the common belief that
round trips to the edge of a tablet’s screen are slow [6,9].

Li et al. [14] show that pressing a button with the
nonpreferred hand is an effective method to switch between
ink and gesture modes. We evaluate techniques for
switching between ink and several other command modes.
The efficiency of command selection depends on the
surrounding operations [2,15]. Some designs optimize
alternation between commands, while others optimize
repetition of a command. For example, ToolGlass [3] has a
tool palette that users position with the nonpreferred hand,
but users must position and click through the ToolGlass
every time they apply a tool, making repetitive tool use
inefficient. Our experiment controls for this by including
both alternation and repetition task patterns.

INTERACTION TECHNIQUES FOR MANAGING MODES
Current applications use several techniques for managing
modes. The Persists technique keeps the selected mode
active until the user chooses a new tool. For example, in

Windows Journal, clicking on the lasso icon turns on
selection mode, which stays on until the user taps the pen
icon. This technique amortizes the cost of the command
selection across several operations, but returning to pen
mode requires an extra step to reselect the pen tool.

The Once technique turns on the selected mode for one use
only, and then automatically reverts to the prior mode. For
example, when a user selects the Insert Space command in
Windows Journal, dragging the pen inserts white space.
When the user lifts the pen, the interface reverts to the
default inking mode. This technique works well for tools
that the user tends to employ one time, but is tedious if the
user applies the same tool multiple times in a row.

Quasimodes such as the spacebar for panning in Photoshop
offer another approach. Quasimodes are only suitable for
temporary modes, as users cannot hold a key indefinitely,
and even on a keyboard, only a few keys for quasimodes
are available, so designers must use them sparingly.

The Springboard
The Springboard is a technique to get more mileage out of
quasimodes. Instead of mapping one control to one mode,
the Springboard allows users to pass through two sub-
modes. Pressing COMMAND starts a command selection
sub-mode (by presenting commands representing various
tools in a menu). After the user selects a tool, the
Springboard transitions to a command performance sub-
mode where the user can apply the selected tool multiple
times. Like a traditional quasimode, releasing COMMAND
always returns to the application’s default mode.

The Springboard thus brings the benefits of a quasimode to
multiple tool modes, because it encompasses all modes in a
pop-up menu within a single spring-loaded control. Like
the Persists technique, Springboard amortizes a command
selection across several operations. But unlike Persists, it
removes most of the extra cost required to turn off the
mode. This should make Springboard more efficient than
Persists in both one-time and multiple-use scenarios.

SpringOnce
During pilot testing of the Springboard, test users liked
holding the button as a way to apply a tool multiple times.
But when the user’s intention was to apply a tool one time
only, some users would release the COMMAND button
immediately after picking the tool from the menu but
before applying it. The system would return to inking, thus
causing users to mistakenly ink rather than applying the
tool. We found this error hard to avoid even after lots of
practice. The problem seemed to be particularly vexing for
the local marking menu version of the Springboard, but did
occasionally arise with the Springboard Lagoon as well.

We realized that a hybrid of Springboard and the Once
technique might help to resolve this issue. If a user selects a
tool without applying it and then lets go of the button, it is
unlikely that he immediately wanted to transition back to
inking. So our SpringOnce design keeps the tool active for
one use in this case. If the user instead continues holding
COMMAND until he starts applying the tool, SpringOnce

then allows the user to keep holding COMMAND to apply
the tool multiple times, just like the Springboard design.

This approach is more forgiving for users who tend to
release the button too early when applying a tool one time.
If the user actually did select a command by mistake, and
his intention was to immediately return to inking, the user
can press COMMAND again to cancel.

EXPERIMENT
We conducted a formal experiment to evaluate the
effectiveness of techniques for transitioning between
multiple modes on tablet computers. We evaluate the
traditional Persists and Once techniques as well as the
Springboard and SpringOnce designs. We decided to
include both of these designs because it was not clear
which one would actually perform the best, and because the
Springboard builds on previous work that suggests
quasimodes can facilitate mode switches [20,21].

Experimental Factors
Several factors may influence the efficiency of tool modes:

Behavior is the user interface’s mode switching policy, i.e.
the status-quo Once and Persists behaviors, plus our
proposed designs, Springboard and SpringOnce.

TaskType. Since Once and Persists support different task
patterns, it is important to test tasks with alternation
between ink and command modes, as well as tasks that
require repetition of the same command. MacKay [15]
notes that when users are performing mechanical copying
and modification tasks, they tend to batch commands
together. But during problem solving, it is difficult to
anticipate the sequence of commands that will be needed,
so users tend to interleave different operations. Hence our
experiment includes examples of each class of task.

MenuType. We wanted to evaluate the effectiveness of the
Springboard designs both for a local marking menu
activated close to the user’s current screen location, as well
as for more traditional interface widgets that are located
near the edges of the screen. We chose the tool lagoon
design as it is now an established approach (used by
Sketchbook and ArtRage) that seems well suited to the pen.

Fig. 2. The Lagoon’s active and inactive states as used in the
experiment. Far right: Using the Local Marking menu to pick
the lasso tool in close proximity to a dot stimulus.

To make our Local Marking menu and our Lagoon menu
designs comparable, unlike the design pictured in Fig. 1,
our experiment places all tool modes in a single marking
menu on the lagoon (Fig. 2, Fig. 6). Since our conditions
require users to draw identical marks to select modes, any
observed effects will not be due to a difference in how the
menus work. Sketchbook also uses marking menus on its

lagoon [6], so this is an established approach. Compared to
our lagoon with icons (Fig. 1), marking from the lagoon of
Fig. 2 has the virtue that the user never has to decide which
icon to aim for, which may speed performance.

For the Springboard designs only, our Lagoon condition
highlights the arc when the user presses the COMMAND
button. The lagoon transitions to a semi-transparent state
when the button is released (Fig. 2). The COMMAND button
was not used at all for the lagoon’s Once and Persists
techniques, as we wanted our implementation to be as close
as possible to status quo mode techniques.

Experimental Task
Inking is the “normal” mode that we expect users to spend
the most time using in applications that leverage the unique
capabilities of a pen-based computer. Thus, in order to test
the full life-cycle of a mode switch, we needed a compound
inking/command selection experimental task that required
the user to start with inking, apply one or more tool modes,
and then return to inking. This task pattern ensured that our
experimental task could capture all of the costs that might
accrue due to (1) switching from inking to a tool mode, (2)
applying a tool mode, and (3) reverting back to the normal
inking mode when finished with a tool. Our experiment
also included all-ink baseline tasks (Fig. 3) to provide a
reference condition without any mode switches.

Fig. 3. Baseline (inking-only) task in progress.

For the inking portion of the task, we decided to have users
draw series of circles, rather than handwriting or scribbling.
Circling captures the essence of handwriting (which
fundamentally consists of oscillatory motions [23]) while
providing a well-defined task that is amenable to
quantitative study. A series of dot stimuli, which the user
always had to work through from left to right, provided a
reference for where the circle had to be drawn.

Fig. 4. Repetition task stimuli.

We wanted the task to be ecologically valid, so we used
commands that mimic the Windows Journal Tablet PC
application. The pen left a thin blue ink trail. Applying the
hiliter tool created a thick yellow trail, and the lasso tool
made a dotted red line. The eraser tool left a gray swath, as
we wanted users to be able to see where they were applying
each tool. All tools were always applied by circling the
current dot stimulus. We told users to think of the eraser as
“erasing what’s inside the circle” rather than as a tool they
had to scrub back and forth.

Each task consisted of a set of 5 subtasks, which we call
segments. The first and last segment are always inking. For
repetition tasks (Fig. 4), segments 2, 3, and 4 all require the
user to apply the same command, and thus the entire task
has an iCCCi pattern, where i is inking, and C is a
command. The user’s task was to circle each dot using the
correct mode. To prevent any errors from cascading, users
could not proceed until they successfully completed the
current segment. If the user made an error a short ‘oops’
sound played. Users were instructed that their circles could
be drawn casually, but should be larger than the dot and
smaller than the box. Drawing the circles was thus a quick
and fluid inking movement, much like jotting down a quick
note, rather than a visually guided steering task or precise
pointing task. If the circle did not contain the dot, or if it
started outside the box, it resulted in an error.

Fig. 5. Alternation task in progress (with Pen mode marking
reminders for Persists, which requires pen reselection).

For alternation tasks (Fig. 5), the task pattern is iCiCi,
where segment 2 is a command, segment 3 is ink, and
segment 4 is a different command. During pilot testing,
users would sometimes skip the ink (segment 3) if the two
C subtasks were the same due to a tendency to chunk two
identical commands together. Thus, we used different
commands for the C segments of the iCiCi pattern.

Fig. 6. Screen layout for experiment, with a user marking from
the lagoon (lower left). The digits at right were not used.

The stimulus for the trial was not revealed until the user
tapped on a Start button (Fig. 6, top center). Each stimulus
shows the user where the command is in the marking menu.
These cues appear above the dots so that the user’s hand
does not occlude them during the task. These are just static
cues, not active icons (we trained users not to tap on them).
For the dots that only required inking, we omitted the
border around the top half of the box to emphasize that the
task segment was different and required returning to the
“normal” inking state. However, for the Persists condition
only, we did provide reminders of how to reselect the pen
(Fig. 5). The dots were color-coded using the dominant

color from the icon for its mode. These cues are intended to
help users anticipate the sequence of actions, instead of
reacting to the stimuli one box at a time.

We also provided users with clear visual feedback of the
currently selected mode. When users completed a marking
selection, the icon for the marking command remained on
the screen as continuous feedback of the selected tool. Each
mode also provided a custom tracking cursor.

The center of the lagoon icon was 125 pixels from the left
and 125 pixels from the bottom (Fig. 6). The lagoon mark
had to start within a 50x50 pixel square around this point.
The first stimulus dot was 104 pixels from the left and 363
pixels from the top. Each dot was separated by 159 pixels.

Experimental Design
Independent variables were MenuType (Local Marking,
Lagoon), Behavior (Once, Persists, Springboard,
SpringOnce), and TaskType (Alternation, Repetition, or
Baseline). Because fully crossing all of these factors results
in too many conditions for a single subject to complete in a
one hour session, we ran Behavior and TaskType as within-
subjects factors and MenuType as a between-subjects factor.

We employed a 4x4 Latin square across the Behavior
conditions to minimize order effects, with 4 participants
each in 4 different orders (2 participants in each Order used
the Lagoon, and 2 used the Local Marking menu). Thus in
total, our experiment includes:
16 Participants x

4 Behaviors x
6 blocks (2 practice, 4 experimental) consisting of

1 baseline trial +
6 command trials (with 3 Alternation tasks +

 3 Repetition tasks mixed in random order);
= 42 trials (28 experimental: 4 baselines + 12

Alternations + 12 Repetitions) per Behavior.
= 168 Trials per subject (112 experimental)

= 2688 total trials (1792 experimental).

These trials include a total of 5*2688 = 13,440 dot-circling
subtask segments (8960 experimental). Half of the
participants used Lagoon and half used Local Marking
menus, for 2688/2 = 1344 trials (896 experimental) in each.

Dependent measures were completion time and error rate.
We recorded the total trial time, which is the total time to
complete all 5 task segments. To facilitate our keystroke
level analyses, we also recorded separate time intervals for
each of the 5 segments and for each elemental subtask
contributing to the final (error-free) circling of the dot
stimulus, i.e. the times to draw the mark, lift the pen, circle
the dot stimulus, and move the pen between segments.

Participants & Training
16 right-handed users participated in the study. Most
participants had used a tablet or a handheld, and all had
used laptops or other mobile devices. All participants self-
reported normal color vision, and we ensured that all
participants positioned the tablet so that they could clearly
distinguish the different colors of the task stimuli.

To familiarize subjects with our experimental stimuli and
task, subjects started with a formal practice session
consisting of 4 baseline practice trials of 5 segments each +
4 marking menu practice trials of 5 segments each). For the
Local Marking conditions, we trained users to invoke the
menu on or near the dot stimulus. They continued to use the
Local Marking menus this way throughout the experiment.

Apparatus
Each participant used a Toshiba Portege TabletPC, running
Windows XP SP2 Tablet Edition, with a 24.5 x 18.5 cm
(1024 x 768 pixel) display. The tablet was used in slate
mode and angled by about 10 degrees using a short monitor
stand to help users achieve a desirable viewing angle. Users
were not allowed to hold the tablet in their lap. We used the
Enter key of a Targus USB Numeric Keypad as the
COMMAND button. We were not able to use the built-in
tablet bezel buttons as they are on the right side and
running these Toshibas in the upside-down screen
orientation significantly degrades interactive performance.

RESULTS
Participants took approximately 1 hour to complete the
experiment including all practice, experimental trials, and
qualitative comments on each technique.

Qualitative Results
Participants ranked the four Behaviors according to their
preference. Analysis of the rank data revealed a significant
overall effect for Behavior (Friedman’s χ2

(3,N=16) = 8.1,
p<.05). Seven of the 8 Lagoon users chose Springboard or
SpringOnce as their favorite technique and one chose Once.
For the 8 Local Marking menu users, 5 chose Springboard
or SpringOnce, 2 chose Persists, and one chose Once. Note
that participants could not contrast Local Marking with the
Lagoon since MenuType was a between-subjects factor.

Total Trial Completion Time
This includes all time after tapping Start (Fig. 6) until
circling the 5th dot stimulus in ink. We conducted a 4x3x4
repeated measures ANOVA on 4 Behaviors (Once,
Persists, Springboard, SpringOnce) by 3 TaskTypes
(Baseline, Alternation, Repetition) by 4 Blocks. The
MenuType (Local Marking, Lagoon) and Order (4
presentation orders) were between-subjects factors.

We used the median completion time to correct for typical
skewing of reaction time data and to remove any outliers.
The median was calculated for each cell of the design at the
Behavior x TaskType x Block level for each subject. At this
level the design has three observations per subject, so we
discarded the best and the worst observation, leaving the
subject’s median trial completion time for data analysis.

Note that some of these median trials do include errors. We
left these trials in this analysis, because the costs resulting
from decision making, hesitations, and errors are part of
what we are trying to measure to accurately characterize the
true cost of command selection [5] for each technique.
Because the user had to finish all task segments correctly to
complete a trial, making errors never allowed users to
complete the task more quickly. We also recorded the times

for the error-free portion of each segment and used those
times to determine the elemental building blocks of each
technique in our keystroke-level analyses (discussed later).

Our analysis revealed a significant effect for Behavior,
F(3,24)=6.17, p<.005. Planned comparisons revealed that
overall Springboard, SpringOnce, and Once were all
significantly faster than the Persists condition (p < .05).

TaskType was highly significant, F(1,8)=145.5, p<.001.
Repetition tasks were faster than Alternation tasks (p<.001).
This is a robust effect because all levels of Behavior
(except the Once technique) required fewer tool mode
selections for Repetitions. The Baseline was fastest (p<.001).

Alternation Total Trial Time (ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Lagoon Local Marking

Once Persist Springboard SpringOnce

Repetition Total Trial Time (ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Lagoon Local Marking

Once Persist Springboard SpringOnce

Fig. 7. Total task times from the experiment.

Behavior x TaskType was also significant, F(1,8)=27.78,
p<.001. This means the best mode Behavior depended on
the TaskType, which underscores the importance of
controlling for different task types as advocated by Mackay
[15] and Appert et al. [2]. Once was the fastest behavior for
Alternation tasks (p<.001). SpringOnce was significantly
faster than both Once and Persists for Repetitions (p<.05)
and faster than Persists for Alternations (p<.05). Although
Springboard had the fastest absolute mean time for
Repetition tasks, it had a higher standard deviation than
SpringOnce. So Springboard was significantly faster than
Once (p<.001) but not significantly faster than Persists.

Block was also significant, F(3,24)=15.59, p<.001, indicating
that participants became more proficient with increasing
experience. The Block x TaskType interaction was also
significant, F(6,48)=2.75, p<.05. This suggests the Repetition
and Alternation tasks exhibited a stronger learning effect
across blocks than the Baseline task.

The Order between-subjects factor had no main effect, but
Behavior x Order F(9,24)=1.93, p<.05 was significant.
Investigation of the means revealed the SpringOnce-first
Order contained the slowest participant in the experiment.
Our impression was that this user preferred to be neater that

most participants and therefore was more deliberate when
circling the dots. Repeating the analysis without this user’s
data showed the same significant results. If the
SpringOnce-first Order resulted in a negative training
effect, we would have expected the Springboard-first
Order to also exhibit this effect. Since it did not, this
interaction probably just reflects a participant effect.

Results for Error Analysis
A trial was an error trial if the user exhibited any mistake or
sub-optimal behavior, such as unnecessarily reselecting the
current mode, for any of the 5 segments. We computed the
error rate for each Behavior and TaskType across all 4
Blocks. Since errors were not possible in the Baseline task,
we only have 2 levels for TaskType in this analysis. Thus
we conducted a 4 (Behavior) x 2 (TaskType: Alternation or
Repetition) repeated measures ANOVA on error rate with
MenuType and Order as between-subject factors.

There were no main effects on error rate for any within or
between-subjects factors. The error rates for each Behavior
were 9.6% for Once, 10.2% for Persists, 12.2% for
Springboard, and 11.2% for SpringOnce. None of these
differences were significant. However, Behavior x
TaskType (F(3,24)=3.89, p<.05) was significant. This
interaction indicates that the SpringOnce design actually
did succeed in reducing errors versus the Springboard for
the Alternation task (17.7% for the Springboard versus
11.5% for SpringOnce). However, the pure Springboard
worked well for Repetition (6.8% errors).

Failure to Detect any Significant Effect of MenuType
Perhaps the most surprising result from the experiment was
that the between-subjects factor MenuType was not
significant (F(1,8)=0.04, p=.85). Overall, the MenuTypes
only differed by 330ms (excluding baseline trials, 7137 ms
for Local Marking vs. 7467 ms for Lagoon.). Prior to the
experiment we estimated that a round trip to the lagoon
should take about 1.5 seconds, yet experts can invoke a
marking menu command in less than 500ms [11,13], which
should give the Local Marking menu an advantage.

An interaction between independent variables potentially
could negate any main effect for an experimental factor, but
the only significant interaction with MenuType was a
Behavior x TaskType x MenuType three-way interaction,
(F(6,48)=2.53, p<.05). Investigation of the means suggested
that this interaction occurred because the Lagoon version of
Springboard and SpringOnce tended to be faster for
Repetition than the Local Marking versions of the
techniques. In fact, the lowest absolute mean completion
time for any technique in the entire experiment was the
Springboard Lagoon for Repetition tasks, at 5938 ms. But
even for the traditional Once and Persists mode techniques,
which demand increased round trips to the lagoon, the
advantage for Local Marking menus was limited.

Another possibility is that some uncontrolled effect could
have obscured any effect of MenuType, or that our
experiment lacked sufficient statistical sensitivity on
MenuType since it was a between-subjects factor. But
because we collected detailed timing information for all

elemental actions contributing to the task times, we can
construct a keystroke-level model of what users had to do
to complete the task and compare that to what we actually
measured in the experiment. This model lets us account for
all of the time that users spent completing the tasks.

KEYSTROKE-LEVEL ANALYSIS
Our keystroke-level analysis required three steps. First, we
defined all of the unit actions required to perform our tasks,
and translated these into keystroke-level models (KLM’s)
that compute the total task time in terms of these unit tasks.
These models omit mental pause operators [4], because we
will estimate any mental pause times from empirical data.

Second, we used our experimental observations from the
Baseline tasks (Fig. 3) and the Once condition (which
doubled as a control condition) to estimate values for these
unit costs. These values can be plugged into our keystroke-
level models to compute an expected physical articulation
time based on users’ performance in the control conditions.

Third, we compared the KLM models to the observed times
for the Behaviors in the Lagoon and Local Marking menus.
This shows where the techniques deviate from the model,
indicating the presence of hidden costs. These costs might
include increased reaction time resulting from planning
what to do next, mental pauses, or delays while the user
attends to visual feedback after performing an action. Our
methodology cannot attribute these costs to a specific
cause. It just lets us deduce that a hidden cost must exist in
a specific portion of the task. This is sufficient to generate
many insights as to where the bottlenecks to performance
lie and what parts of a technique might be improved.

Step 1: Define KLM and Compute Unit Task Costs
A trial consisted of five subtasks (segments), each with a
dot stimulus that the user circled with the correct tool. For
some segments, the user already has the correct tool. The
time AP to Apply the tool after pointing to the segment is:

AP = (PS + DC), where (Eq.1)
PS = Point the pen at the segment
DC = Draw a circle around the dot

If the user needs to change the tool, the time MC to use the
Menu to pick a new command is:

MC = (PC + DM), where (Eq.2)
PC = Point where the command will be activated
DM = Draw the mark

Then, it takes time AM to Apply the tool after marking:
AM = (PM + DC), where (Eq.3)

PM = Point from end of the mark to the dot
(DC is again the time to circle the dot)

We can now populate tables to summarize the overall costs
for each technique by following several rules: (1) a segment
that does not require a mode switch just takes time AP; (2)
any task segment that requires a tool mode switch requires
time MC + AM to complete; and (3) if the user may need to
press COMMAND, this is noted by tallying each mode-in
cost min and mode-out cost mout. These always come in
pairs (min + mout) since the user eventually lets go.

The tables below, prominently labeled R for the Repetition
task models (Fig. 8) and A for the Alternation task models
(Fig. 9), summarize the resulting KLM models.

Repetition Task
1 2 3 4 5 R i C C C i

R KLM’s
Computed
total time

SpringBoard,
SpringOnce

AP

min
MC
AM

AP

AP

mout

AP

1 (min+mout)
1 MC
4 AP 1 AM

Persists

AP

min+mout
MC
AM

AP

AP

min+mout
MC
AM

2 (min+mout)
2 MC
3 AP 2 AM

Once

AP

min+mout
MC
AM

min+mout
MC
AM

min+mout
MC
AM

AP

3 (min+mout)
3 MC
2 AP 3 AM

Fig. 8. Keystroke-Level Models for the Repetition task.

Alternation Task
1 2 3 4 5 A i C1 i C2 i

A KLM’s
Computed
total time

SpringBoard,
SpringOnce

AP

min
MC
AM

mout

AP

 min
MC
AM

mout

AP

2 (min+mout)
2 MC
3 AP 2 AM

Persists

AP

min+mout
MC
AM

min+mout
MC
AM

min+mout
MC
AM

min+mout
MC
AM

4 (min+mout)
4 MC
1 AP 4 AM

Once

AP

min+mout
MC
AM

AP

min+mout
MC
AM

AP

2 (min+mout)
2 MC
3 AP 2 AM

Fig. 9. Keystroke-Level Models for the Alternation task.

Step 2: Estimate Values for Unit Task Costs
Because the Once condition was so repetitive, it required
very little decision making while performing the task. Thus
the component times for Once tended to be faster than the
other conditions. This fast pace tended to continue through
the baseline trials that users encountered during Once. For
our purposes, we want the KLM models to estimate the
pure physical articulation costs of each technique. Thus in
our experiment the Once condition, as well as the baselines
performed during the Once condition, yielded the best
estimates for these pure physical articulation costs. For the
times related to drawing the mark and returning to the dot
after marking, for each MenuType we took the average time
for the task segments in Once that contained tool selections.

Note that in our experimental data collection, we recorded
each of the 5 individual time intervals defined above (PS ,
DC , PC , DM , and PM) for each of the 5 segments of every
trial. Thus our full data set includes these 25 additional
dependent measures, which allows us to calculate the
expected physical articulation times (without decision or
mental preparation costs) for each of the unit actions:

For the Local Marking Menu (denoted with subscript m):
PSm = 347 ms (point to the segment)
DCm = 433 ms (draw a circle around dot)
PCm = PSm (mark in-place near dot)
DMm = 494 ms (draw the mark)
PMm = 168 ms (move to dot after marking)
APm=(PSm + DCm) = 780 ms
MCm=(PCm + DMm) = 841 ms
AMm=(PMm + DCm) = 601 ms

For the Lagoon Menu (denoted with subscript l):
PSl = 307 ms (point to the segment)
DCl = 440 ms (draw a circle around dot)
PCl = 558 ms (point to the lagoon)
DMl = 667 ms (draw the mark on lagoon)
PMl = 283 ms (time to return from the lagoon)
APl = (PSl + DCl) = 747 ms
MCl = (PCl + DMl) = 1225 ms
AMl = (PMl + DC) = 723 ms

Thus, we can see immediately from these estimates that the
time penalty for making a round trip to the lagoon was not
that large. The largest advantage for Local Marking comes
from the time to pick a command from the menu MC , with
(1225 - 841) = 384ms being saved versus Lagoon. It only
took users 558ms to move the pen to the lagoon, and the
time to draw the mark on the lagoon also took (667 – 494)
= 173ms longer. This may have been because users were
moving the pen quickly and were still coming to a stop as
they started drawing the mark on the lagoon.

The small value for PMm (time to move from the end of the
mark to the dot=168ms) confirms that users did mark close
to the dot. However, the segments containing each stimulus
were fairly large targets, so the time PMl to return to the
vicinity of the stimulus from the lagoon was only 283ms,
just 122ms more than PMm for the Local Marking menu.

Step 3: Compare Computed Costs to Observed Costs
Reaction Time
We estimated the time required to react to the stimulus for
each MenuType. The time to move from the Start button to
begin circling the dot in the first segment includes the time
to physically move the pointing device plus the unknown
reaction time Rt. We know the time to point from the Start
button to the first dot must be a minimum of PSl = 307 ms
(the average time in the Lagoon conditions to point to the
next dot when no tool selection was required). If we
attribute all of the remaining time to reaction time, this
gives us a conservative estimate, yielding average reaction
times of Rtl = 434ms for the Lagoon and Rtm = 643ms for
Local Marking, favoring Lagoon by 209ms.

Mode Switching Time from Pressing the COMMAND Button
For the mode switching time (min + mout), [14] reports
139ms for their nonpreferred hand button technique. From
our data, the KLM for the Repetition task predicts the Once
technique with the Local Marking menu takes:

= 3MCm + 2APm + AMm = 5886 + 3(min+mout) (Eq.4)
The actual value we observed in our experiment for this
condition was 6946 ms, which includes Rtm = 643 ms.
Assuming that all of the unaccounted time is due to
pressing the button, we solve:

5886 + 3(min + mout) = 6946 – 643, yielding (Eq.5)
 (min + mout) = 177ms

This agrees fairly closely with Li et al. [14] and our task
was more complex so it makes sense that mode switching
time could have increased slightly. Thus we will use
(min+mout) = 177ms for both Local Marking and Lagoon,
and we will assume min ≈ mout = (177 / 2) = 88.5 ms.

Computed Costs: Average Total Trial Times
We can now calculate the average total trial times we
would expect based on the unit task times. To do this, we
compute the sum of the KLM models for all 4 Behaviors
and the 2 tasks (Repetition and Alternation):

Local Marking expected average trial time MT : (Eq.6)
MT= [(17MCm + 23APm + 17AMm)+ 17(min+mout)] / (4*2)
 = 5758ms total (5306ms excluding min+mout)

The Lagoon conditions require fewer (min+mout) actions
because they do not use the button for Once or Persists.
Furthermore, we observed that for Springboard and
SpringOnce, users tended to press the button while moving
the pen to the lagoon. Thus, it seems likely that some or all
of the min mode-in cost for the Lagoon occurs in parallel
with the PCl unit task, so we only count mout time for the
Lagoon conditions where the button was needed:

Lagoon expected average trial time LT : (Eq.7)
LT = [(17MCl + 23APl + 17AMl) + 6(mout)] / (4 * 2)
 = 6354ms total (6287ms excluding mout)

Erosion of the Time-Motion Benefits for Local Marking
Without the button presses, the models above predict the
advantage for Local Marking should be (6287-5307)=
980ms. This is the theoretical time-motion efficiency
advantage that Local Marking menus should exhibit due to
elimination of round trips, as reflected in the smaller values
for its MCm and AMm unit task costs compared to MCl and
AMl for the Lagoon. But once we consider the (min+mout)
button presses, this advantage is reduced 310ms due to the
increased button press costs for Local Marking. Adding in
the 209ms increased reaction time further undermines the
advantage for Local Marking, reducing the theoretical
980ms advantage by a total of 519ms to yield a net
predicted advantage of only 461ms compared to Lagoon.

This agrees quite closely with the average Local Marking
vs. Lagoon total trial time difference of 330ms that we
observed in our experiment, leaving only 131ms
unaccounted for. This small remaining difference may
result from limitations of our models, the occasional time
that participants lost due to errors, or other random
between-subject variations. Thus, altogether these analyses
confirm that it was unlikely we could have observed a
significant advantage for Local Marking menus for our
experimental task.

Mental Preparation Costs in the Mode Behaviors
We can identify hidden costs in the Once, Persists,
Springboard, and SpringOnce techniques by comparing the
observed times for each segment to the values predicted by
our models. For this analysis, for each task segment, we
computed the sum of all the times for command selection
(if any) and circling of the dot stimulus in the correct mode.

Fig. 10 shows the results. Due to random deviation from
the average unit task times, users sometimes completed
subtasks faster during Once than our models predicted. For
Alternation tasks, the Springboard and SpringOnce designs
both appear to require extra decision making time during
the two C command subtasks, but despite this were still

faster overall than Persists. This suggests that Persists (and
Once) are mostly constrained by physical articulation time,
whereas the bottleneck for Springboard and SpringOnce is
decision time. For Repetition tasks, Persists, Springboard,
and SpringOnce all appear to have a mental set-up cost in
segment 2 (the first command C) as users decide whether or
not to use the tool multiple times in a row.

Local Marking - Alternation

-100 0 100 200 300 400 500 600 700

i

C

i

C

i

Persists

Once

Springboard

SpringOnce

Lagoon - Alternation

-100 0 100 200 300 400 500 600 700

i

C

i

C

i

Persists
Once
Springboard
SpringOnce

Local Marking - Repetition

-100 0 100 200 300 400 500 600 700

i

C

C

C

i

Persists

Once

Springboard

SpringOnce

Lagoon - Repetition

-100 0 100 200 300 400 500 600 700

i

C

C

C

i

Fig. 10. Difference in observed times vs. computed times for
each Behavior and MenuType. The vertical axis shows subtask
segments 1 (top) to 5 (bottom). Time (ms) is horizontal axis.

DISCUSSION
Can Local Marking Perform Better?
Our models suggest that Local Marking would have fared
better if no movement had been required to proceed to the
next task segment. The Local Marking menu defined the
time to move to the location where the mark is drawn as
PCm = PSm =347ms, which is just saying that it is the time to
point to the next segment. If the user can keep working in
the same spot, PCm would drop to some minimum time
needed to lift the pen between commands, say 100ms. In
this scenario our models predict that the local marking
menus would gain another 1200ms performance advantage
over the Lagoon, because the round trip time is still
required to pick a command with the lagoon and cannot be
eliminated. Thus, in a sense the time to move between the
experimental stimuli was an added cost for Local Marking,
but not for the Lagoon, because the round trip time absorbs
the time needed to move between stimuli. It is not clear
how often real-world tasks would have sufficiently high
locality of reference for the Local Marking menu to avoid
this ‘extra cost’ and gain the calculated benefit of 1200ms.

We can also consider N repetitions of a command rather
than just 3 repetitions. Our observed time for the Local
Marking menu’s Persists condition was actually slightly
slower than Once even for Repetition tasks (Fig. 7). By
generalizing the model for the Persists repetition task in
terms of N, the number of commands performed in a row,
we can solve for N and determine that the break even point
for Persists is N=4.8, so at least 5 repetitions would be

necessary for the Persists technique to be worthwhile with
the Local Marking menu. Similar calculations show that
our Springboard designs had paid for the extra set-up time
to invoke them by the second command invocation on the
Lagoon and by the third command for Local Marking.

We can also consider use of round-trip designs such as the
lagoon on larger displays or for tasks that require greater
precision of pointing. For example, if we double the round
trip times PCl and PMl, this would increase the Lagoon’s
average task times for our experimental tasks by
approximately 2 seconds overall, which again would
provide a scenario where Local Marking offers a benefit.

We anticipate that Local Marking may have increased
benefit if the starting location of a mark chooses the object
to act upon, because it integrates selection of an object with
command selection [3,9]. Like right-click, this limits the
commands offered in a menu to those valid for the selected
object. For these reasons, our current results should not be
extrapolated to commands that require a prior selection.

Finally, localized user interfaces (whether marking menus
or something else) may offer benefits to users that were not
captured by our experimental task. For example, localized
interfaces may reduce the physical effort needed to move
around the screen. Recent results suggest they may also
prevent visual diversion of attention from one’s work [7].

Design Issues for the Springboard
There are several design questions for the Springboard:
Does a tool stay selected across invocations? Three users
commented that the Springboard Lagoon should reactivate
the prior tool if they hit COMMAND and stroke the pen
without going to the lagoon. We find this feature works
well (see video). It allows users to quickly interleave inking
with another mode, thus facilitating tasks such as panning
while annotating a document, or going through a document
with a highlighter while jotting down notes. It may not be
possible to support this desired feature for Local Marking.
How to provide a spring-loaded control for the
nonpreferred hand on a tablet? Our users found the Enter
key acceptable for use on a supporting surface, but felt that
COMMAND should be part of the tablet. We are currently
exploring placement of a button on the Tablet PC bezel, as
well as other spring-loaded control designs. A control
should be accessible for both left and right handed use from
any of the 4 screen orientations, and it should not cause
inadvertent activations. Also, some new Tablet PC designs
make the keyboard more accessible, and some Wacom
desktop tablets offer side buttons suitable for COMMAND.
Are other design hybrids with the Springboard possible?
Our KLM models show that Springboard and SpringOnce
can theoretically go as fast as the Once technique for
Alternation tasks (Fig. 9), yet in our experiment users were
not able to realize this level of performance. It is possible
that experts could use the techniques more efficiently, or
further design hybrids may be possible. A lagoon that
always stays active could support both the Once behavior
and the SpringOnce behavior. If the user employs the

lagoon without the COMMAND button, the lagoon could
default to the Once behavior, which is easy for novices to
learn, and is efficient in many situations. This is also useful
if a device lacks COMMAND, or if the user eschews
COMMAND due to fatigue or laziness. But if the user instead
presses and holds COMMAND prior to completing the first
application of the tool mode, this could trigger SpringOnce.
Does the lagoon stay visible when inactive? We tried a
fully disappearing lagoon, but it seems important to have a
visual target in order to make a ballistic motion from the
work area to the lagoon. Without a target to aim for, users
must move to the general area, and then make a corrective
movement when the lagoon appears, which might reduce
performance. Future studies should investigate this further.

CONCLUSION AND FUTURE WORK
Our experimental results showed that users preferred
Springboard and SpringOnce to the status-quo Once and
Persists techniques. One user felt strongly that using the
button was a pain, but most users liked having a choice that
let them control how long a mode stayed active. Although
Springboard and SpringOnce performed similarly in the
experiments, the SpringOnce design did tend to result in a
lower error rate than the Springboard, particularly for
Alternation tasks. This suggests that SpringOnce can
provide an effective mechanism for users to manage
multiple tool modes from a single spring-loaded control.

The new designs were faster than Persists overall and were
faster than Once for Repetition tasks. However, Once
remains the technique of choice for alternation; in this case
it would be hard to beat Once, unless the user keeps
interleaving the same command and uses the Springboard
design option suggested above where the tool remains
selected across invocations of the lagoon. Thus, exploration
of design hybrids with Once offers a promising avenue for
mode behaviors that can support a variety of task contexts.

Our keystroke-level analyses showed that the Local
Marking menu has a time-motion efficiency advantage in
theory, but in practice this advantage is smaller than we
anticipated and is eroded by several ancillary costs, such as
mode switching and reaction time, that appear to favor the
Lagoon menu design. Failing to find a statistically
significant difference cannot prove that there is no
difference between the Lagoon and the Local Marking
menu. But the failure to detect this effect combined with
the results of our keystroke level analysis, which suggest
why Local Marking failed to significantly outperform the
Lagoon, together make a convincing case that it is difficult
for the Local Marking menu to provide a substantial benefit
in the task context that our experiment studied.

Thus, elimination of round trips does not necessarily
improve the speed of tool switching on tablet computers.
Our hope is that our results and methodology can offer
better insights into factors influencing performance for pen
and gesture interfaces. We must continue to explore
alternative task contexts, novel localized interface designs,
or other metrics of user performance where pen and gesture
interfaces can offer significant performance advantages.

ACKNOWLEGEMENT
This work has been supported in part by the Microsoft
Center for Interaction Design and Visualization at the
University of Maryland and NSF under grant IIS-0414699.
REFERENCES
1. Apitz, G., Guimbretiere, F. CrossY: A crossing based drawing

application. UIST 2004, 3-12.
2. Appert, C., Beaudouin-Lafon, M., Mackay, W. Context matters:

Evaluating interaction techniques with the CIS model. Proc. of
HCI 2004, Springer Verlag, 279-295.

3. Bier, E., Stone, M., Pier, K., Buxton, W., DeRose, T. Toolglass
and Magic Lenses: The See-Through Interface. Proceedings of
SIGGRAPH 93, 73-80.

4. Card, S., Moran, T., Newell, A., The Keystroke-Level Model for
User Performance Time with Interactive Systems.
Communications of the ACM, 1980. 23(7): p. 396-410.

5. Dillon, R., Eday, J., Tombaugh, J., Measuring the True Cost of
Command Selection: Techniques and Results.CHI'90, 19-25.

6. Fitzmaurice, G., Khan, A., Pieke, R., Buxton, B., Kurtenbach, G.
Tracking Menus. UIST 2003, 71-79.

7. Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M.,
Balakrishnan, R. Hover Widgets: Using the Tracking State to
Extend the Capabilities of Pen-Operated Devices. CHI 2006.

8. Guimbretiere, F., Winograd, T. FlowMenu: Combining
Command, Text, and Data Entry. UIST 2000, 213-216.

9. Hinckley, K., Baudisch, P., Ramos, G., Guimbretiere, F. Design
and Analysis of Delimiters for Selection-Action Pen Gesture
Phrases in Scriboli. CHI 2005, 451-460.

10. Johnson, J., Modes in non-computer devices. Int. J. Man-Mach.
Studies, 1990. 32(4): 423-438.

11. Kurtenbach, G., Buxton, W. The Limits of Expert Performance
Using Hierarchic Marking Menus. INTERCHI'93, 482-487.

12. Kurtenbach, G., Fitzmaurice, G., Owen, R., Baudel, T. The
Hotbox: Efficient Access to a Large Number of Menu-items.
CHI'99, 231-237.

13. Kurtenbach, G., Sellen, A., Buxton, W., An emprical evaluation
of some articulatory and cognitive aspects of 'marking menus'. J.
Human Computer Interaction, 1993. 8(1).

14. Li, Y., Hinckley, K., Guan, Z., Landay, J. A. Experimental
Analysis of Mode Switching Techniques in Pen-based User
Interfaces. CHI 2005, 461-470.

15. Mackay, W. E. Which Interaction Technique Works When?
Floating Palettes, Marking Menus and Toolglasses Support
Different Task Strategies. ACM AVI 2002, 203-208.

16. McLoone, H., Hinckley, K., Cutrell, E. Ergonomic Principles
Applied to the Design of the Microsoft Office Computer
Keyboard. IEA 2003 International Ergonomics Association.

17. Norman, D. A., Categorization of Action Slips. Psychology
Review, 1981. 88(1): p. 1-15.

18. Poller, M., Garter, S., The Effect of Modes on Text Editing by
Experienced Editor Users. Human Factors, 26(4): 449-462.

19. Pook, S., Lecolinet, E., Vaysseix, G., Barillot, E. Control Menus:
Execution and Control in a Single Interactor. CHI 2000
Extended Abstracts, 263-264.

20. Raskin, J., The Humane Interface: New Directions for Designing
Interactive Systems. 2000: ACM Press.

21. Sellen, A., Kurtenbach, G., Buxton, W., The Prevention of Mode
Errors through Sensory Feedback. J. Human Computer
Interaction, 1992. 7(2): p. 141-164.

22. Tesler, L., The smalltalk environment. Byte 6(8): p. 90-147.
23. Wilson, F. R., The Hand: How its use shapes the brain,

language, and human culture. 1998, New York: Pantheon.
24. Zhao, S., Balakrishnan, R. Simple vs. Compound Mark

Hierarchical Marking Menus. UIST 2004, 33-42.

