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ABSTRACT 
Modes allow a few inputs to invoke many operations, yet if 
a user misclassifies or forgets the state of a system, modes 
can result in errors. Spring-loaded modes (quasimodes) 
maintain a mode while the user holds a control such as a 
button or key. The Springboard is an interaction technique 
for tablet computers that extends quasimodes to encompass 
multiple tool modes in a single spring-loaded control. The 
Springboard allows the user to continue holding down a 
nonpreferred-hand command button after selecting a tool 
from a menu as a way to repeatedly apply the same tool. 
We find the Springboard improves performance for both a 
local marking menu and for a non-local marking menu 
(“lagoon”) at the lower left corner of the screen. Despite the 
round-trip costs incurred to move the pen to a tool lagoon, a 
keystroke-level analysis of the true cost of each technique 
reveals the local marking menu is not significantly faster.  
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INTRODUCTION 
Modes are all about using one input device to do multiple 
things. Most of the relevant literature on modes dates from 
the era of keyboard-only interfaces and text editors that 
were infamous for cryptic key combinations, such as vi and 
emacs [18], that could trap unsuspecting users in seemingly 
inescapable modes. The essence of the problem was that all 
system functions were invoked using the same set of keys 
that served primarily for text entry. The situation led Tesler, 
in a classic 1981 Byte article, to lament Don’t mode me in! 
to describe his feeling of entrapment by modes [22]. Such 
problems seem antiquated, yet we now face pen-operated 
devices that lack a keyboard. All functions are invoked 
using the same pen that serves primarily for inking on the 
screen. The resulting modal traps seem all too familiar. 

For tablet computers, common modes include pen/inking 
mode, gesture mode, selection mode, eraser mode, 
highlighter mode, panning and zooming modes, and object 

creation modes (e.g. drag out a rectangle or ellipse). Such 
modes plague many note-taking and drawing applications, 
including Windows Journal, OneNote, Alias Sketchbook, 
and even the classic MacPaint interface. These programs 
all exhibit a strong default mode (inking or drawing) where 
users are expected to spend most of their time, but users 
also need frequent but temporary access to tool modes. 
These applications have an iCi task structure, where i is the 
default inking mode and C is the temporary command 
mode. Quasimodes, also known as spring-loaded modes, 
are well suited to such iCi tasks [20,21]. But quasimodes 
only provide a spring-loaded control for one mode. It is not 
practical to have a button for all of the modes listed above; 
even if it were, hitting the wrong button would undermine 
the benefits of providing a quasimode for each tool [10]. As 
a result, designers must use quasimodes sparingly. 

 
Fig. 1.  Illustration of the Springboard using a tool lagoon with 
icons. (a) Inking is the default. (b) The user holds down a 
nonpreferred-hand button to call up the lagoon, and taps the 
hiliter tool. (c) Pen strokes apply the hiliter as long as the user 
holds the button. (d) Releasing the button returns to inking.  

To address this, we propose the Springboard as a way to 
extend a quasimode associated with a single spring-loaded 
control to multiple modes. For clear illustration, Fig. 1 
shows a version of the Springboard design with icons, but 
the implementation we study in detail uses marking menus. 
To use the Springboard, the user presses and holds a 
nonpreferred-hand button (COMMAND) located on the 
screen bezel. The user then makes a menu selection to 
choose the desired tool mode. The key difference compared 
to quasimodes is that as long as the user continues to hold 
COMMAND, he can apply the selected tool mode by making 
one or more pen strokes. Releasing COMMAND turns off the 
tool mode, and returns the application to its default mode.  
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The Springboard can be applied to a “local” menu that the 
user activates from the current pen position, or to “remote” 
menus that lie at the edges of the screen. For the local 
design, we implemented a marking menu that was triggered 
by stroking while pressing a nonpreferred-hand button [14]. 
For the remote design, we implemented a marking menu 
that was triggered from a “tool lagoon” [6] in the lower left 
corner. In this case, the location of the pen stroke already 
signals that the mark is a command, so the Springboard 
uses the COMMAND button press to keep the selected tool 
mode active. This button press is an extra cost, but it might 
save time if it can eliminate round trips. 

We contribute the Springboard as a design option for mode 
switching. We also contribute an experimental paradigm 
for rigorous quantitative analysis of mode and command 
selections. Our paradigm contrasts different interaction 
patterns to operationalize in-situ uses of a technique, and 
uses a subtraction methodology [5,14] to isolate physical 
articulation costs via a keystroke-level model. This 
paradigm ensures that we can identify any extra costs over 
the full life-cycle of a mode switch. Our analysis reveals 
that on a tablet-sized device, the local marking menu was 
not significantly faster than a marking menu on the tool 
lagoon. Interface designers can use our models and 
experimental approach to extend these results to variations 
on the specific interface designs that we tested, or to reason 
about design tradeoffs in other similar inking/command 
tasks that naturally arise in pen gesture interfaces. 

RELATED WORK 
A user commits a mode error when he or she fails to 
comprehend the current state of the system and thus 
performs an action which is incorrect given the true state of 
the system [17]. Quasimodes may reduce the potential for 
mode errors by helping users maintain awareness of the 
system’s state. Sellen et al. [21] show that holding a foot 
pedal reduces errors in a text editor, but a latching foot 
pedal that holds its state for the user does not. This suggests 
the user’s active maintenance of muscle tension is the 
crucial quality of a quasimode. For example, holding SHIFT 
to temporarily capitalize letters is a quasimode, but CAPS 
LOCK is not because tapping the key persists the mode. 
Another good example of a quasimode is the panning tool 
in Photoshop. The user presses and holds the spacebar, and 
can then click and drag multiple times to pan an image; 
releasing the spacebar returns to the prior mode. Note that 
the spacebar accesses one and only one temporary function. 

Tracking menus are menus that follow the pen [6]. Alias 
Sketchbook 2.0 activates a pan/zoom tracking menu when 
the user holds the spacebar. The user may pan by quickly 
“pawing” [6] at the screen (just as in Photoshop), or may 
instead target the center of the tracking menu to zoom. 
Releasing the spacebar dismisses the tracking menu and 
returns to drawing mode. Thus the tracking menu offers a 
quasimode with one other rapid-access function. 

Marking menus use the direction of a pen stroke to select 
commands [13]. Several systems allow extension of the 
stroke to transition from command selection to a dragging 

mode specific to the selected command [8,9,19]. In all of 
these systems, the pen must stay in continuous contact with 
the screen: the dragging phase ends as soon as the user lifts 
the pen. The Springboard enables the user to draw multiple 
strokes in the tool mode by continuing to hold the button, 
rather than forcing a single stroke syntax [1,24]. 

The Springboard shares some properties of the hotbox in 
Alias Maya [12]. The user activates a hotbox by pressing 
and holding the spacebar; the hotbox disappears when the 
user releases the spacebar. The hotbox offers multiple 
marking menus that the user can select from; the user can 
also issue multiple commands in a single posting. The 
Springboard extends the hotbox in one critical dimension: 
when the user marks to select a command, the user keeps 
holding the button to apply the resulting tool mode as many 
times as desired by stroking the pen.  

There are several strategies to improve command 
efficiency. Some applications persist a mode if the user 
presses SHIFT while clicking on an icon. The Xerox Star 
had an AGAIN key, and some modern keyboards have a 
REDO key [16]. These keys repeat the last command. 
Pressing CTRL while clicking on a color chip in Microsoft 
Paint lets users reapply that color whenever they hold 
CTRL; releasing CTRL returns to the prior color. Unlike 
Paint, the Springboard emphasizes and deemphasizes the 
visual representation of the interface with the COMMAND 
button press, and generalizes the approach to tool modes. 
Also, our experiment is the first to study this design option 
and demonstrate that it offers significant advantages.  

Dillon et al. [5] assess the true cost of command selection. 
Their study compares a baseline task without commands to 
a compound task with command selections; subtracting the 
two yields the true cost. We extend this subtraction 
methodology by contributing a new methodology that 
leverages keystroke-level analyses to carefully tabulate all 
costs associated with mode selection. This approach allows 
us to show that locally-activated marking menus do not 
benefit tool mode switching despite the common belief that 
round trips to the edge of a tablet’s screen are slow [6,9].  

Li et al. [14] show that pressing a button with the 
nonpreferred hand is an effective method to switch between 
ink and gesture modes. We evaluate techniques for 
switching between ink and several other command modes. 
The efficiency of command selection depends on the 
surrounding operations [2,15]. Some designs optimize 
alternation between commands, while others optimize 
repetition of a command. For example, ToolGlass [3] has a 
tool palette that users position with the nonpreferred hand, 
but users must position and click through the ToolGlass 
every time they apply a tool, making repetitive tool use 
inefficient. Our experiment controls for this by including 
both alternation and repetition task patterns. 

INTERACTION TECHNIQUES FOR MANAGING MODES 
Current applications use several techniques for managing 
modes. The Persists technique keeps the selected mode 
active until the user chooses a new tool. For example, in 



 

Windows Journal, clicking on the lasso icon turns on 
selection mode, which stays on until the user taps the pen 
icon. This technique amortizes the cost of the command 
selection across several operations, but returning to pen 
mode requires an extra step to reselect the pen tool. 

The Once technique turns on the selected mode for one use 
only, and then automatically reverts to the prior mode. For 
example, when a user selects the Insert Space command in 
Windows Journal, dragging the pen inserts white space. 
When the user lifts the pen, the interface reverts to the 
default inking mode. This technique works well for tools 
that the user tends to employ one time, but is tedious if the 
user applies the same tool multiple times in a row.  

Quasimodes such as the spacebar for panning in Photoshop 
offer another approach. Quasimodes are only suitable for 
temporary modes, as users cannot hold a key indefinitely, 
and even on a keyboard, only a few keys for quasimodes 
are available, so designers must use them sparingly.  

The Springboard 
The Springboard is a technique to get more mileage out of 
quasimodes. Instead of mapping one control to one mode, 
the Springboard allows users to pass through two sub-
modes. Pressing COMMAND starts a command selection 
sub-mode (by presenting commands representing various 
tools in a menu). After the user selects a tool, the 
Springboard transitions to a command performance sub-
mode where the user can apply the selected tool multiple 
times. Like a traditional quasimode, releasing COMMAND 
always returns to the application’s default mode.  

The Springboard thus brings the benefits of a quasimode to 
multiple tool modes, because it encompasses all modes in a 
pop-up menu within a single spring-loaded control. Like 
the Persists technique, Springboard amortizes a command 
selection across several operations. But unlike Persists, it 
removes most of the extra cost required to turn off the 
mode. This should make Springboard more efficient than 
Persists in both one-time and multiple-use scenarios.  

SpringOnce 
During pilot testing of the Springboard, test users liked 
holding the button as a way to apply a tool multiple times. 
But when the user’s intention was to apply a tool one time 
only, some users would release the COMMAND button 
immediately after picking the tool from the menu but 
before applying it. The system would return to inking, thus 
causing users to mistakenly ink rather than applying the 
tool. We found this error hard to avoid even after lots of 
practice. The problem seemed to be particularly vexing for 
the local marking menu version of the Springboard, but did 
occasionally arise with the Springboard Lagoon as well.  

We realized that a hybrid of Springboard and the Once 
technique might help to resolve this issue. If a user selects a 
tool without applying it and then lets go of the button, it is 
unlikely that he immediately wanted to transition back to 
inking. So our SpringOnce design keeps the tool active for 
one use in this case. If the user instead continues holding 
COMMAND until he starts applying the tool, SpringOnce 

then allows the user to keep holding COMMAND to apply 
the tool multiple times, just like the Springboard design. 

This approach is more forgiving for users who tend to 
release the button too early when applying a tool one time. 
If the user actually did select a command by mistake, and 
his intention was to immediately return to inking, the user 
can press COMMAND again to cancel.  

EXPERIMENT 
We conducted a formal experiment to evaluate the 
effectiveness of techniques for transitioning between 
multiple modes on tablet computers. We evaluate the 
traditional Persists and Once techniques as well as the 
Springboard and SpringOnce designs. We decided to 
include both of these designs because it was not clear 
which one would actually perform the best, and because the 
Springboard builds on previous work that suggests 
quasimodes can facilitate mode switches [20,21]. 

Experimental Factors 
Several factors may influence the efficiency of tool modes: 

Behavior is the user interface’s mode switching policy, i.e. 
the status-quo Once and Persists behaviors, plus our 
proposed designs, Springboard and SpringOnce.  

TaskType. Since Once and Persists support different task 
patterns, it is important to test tasks with alternation 
between ink and command modes, as well as tasks that 
require repetition of the same command. MacKay [15] 
notes that when users are performing mechanical copying 
and modification tasks, they tend to batch commands 
together. But during problem solving, it is difficult to 
anticipate the sequence of commands that will be needed, 
so users tend to interleave different operations. Hence our 
experiment includes examples of each class of task. 

MenuType. We wanted to evaluate the effectiveness of the 
Springboard designs both for a local marking menu 
activated close to the user’s current screen location, as well 
as for more traditional interface widgets that are located 
near the edges of the screen. We chose the tool lagoon 
design as it is now an established approach (used by 
Sketchbook and ArtRage) that seems well suited to the pen.  

   
Fig. 2. The Lagoon’s active and inactive states as used in the 
experiment. Far right: Using the Local Marking menu to pick 
the lasso tool in close proximity to a dot stimulus. 

To make our Local Marking menu and our Lagoon menu 
designs comparable, unlike the design pictured in Fig. 1, 
our experiment places all tool modes in a single marking 
menu on the lagoon (Fig. 2, Fig. 6). Since our conditions 
require users to draw identical marks to select modes, any 
observed effects will not be due to a difference in how the 
menus work. Sketchbook also uses marking menus on its 



 

lagoon [6], so this is an established approach. Compared to 
our lagoon with icons (Fig. 1), marking from the lagoon of 
Fig. 2 has the virtue that the user never has to decide which 
icon to aim for, which may speed performance. 

For the Springboard designs only, our Lagoon condition 
highlights the arc when the user presses the COMMAND 
button. The lagoon transitions to a semi-transparent state 
when the button is released (Fig. 2). The COMMAND button 
was not used at all for the lagoon’s Once and Persists 
techniques, as we wanted our implementation to be as close 
as possible to status quo mode techniques. 

Experimental Task 
Inking is the “normal” mode that we expect users to spend 
the most time using in applications that leverage the unique 
capabilities of a pen-based computer. Thus, in order to test 
the full life-cycle of a mode switch, we needed a compound 
inking/command selection experimental task that required 
the user to start with inking, apply one or more tool modes, 
and then return to inking. This task pattern ensured that our 
experimental task could capture all of the costs that might 
accrue due to (1) switching from inking to a tool mode, (2) 
applying a tool mode, and (3) reverting back to the normal 
inking mode when finished with a tool. Our experiment 
also included all-ink baseline tasks (Fig. 3) to provide a 
reference condition without any mode switches.  

 
Fig. 3. Baseline (inking-only) task in progress.  

For the inking portion of the task, we decided to have users 
draw series of circles, rather than handwriting or scribbling. 
Circling captures the essence of handwriting (which 
fundamentally consists of oscillatory motions [23]) while 
providing a well-defined task that is amenable to 
quantitative study. A series of dot stimuli, which the user 
always had to work through from left to right, provided a 
reference for where the circle had to be drawn.  

 
Fig. 4. Repetition task stimuli.  

We wanted the task to be ecologically valid, so we used 
commands that mimic the Windows Journal Tablet PC 
application. The pen left a thin blue ink trail. Applying the 
hiliter tool created a thick yellow trail, and the lasso tool 
made a dotted red line. The eraser tool left a gray swath, as 
we wanted users to be able to see where they were applying 
each tool. All tools were always applied by circling the 
current dot stimulus. We told users to think of the eraser as 
“erasing what’s inside the circle” rather than as a tool they 
had to scrub back and forth. 

Each task consisted of a set of 5 subtasks, which we call 
segments. The first and last segment are always inking. For 
repetition tasks (Fig. 4), segments 2, 3, and 4 all require the 
user to apply the same command, and thus the entire task 
has an iCCCi pattern, where i is inking, and C is a 
command. The user’s task was to circle each dot using the 
correct mode. To prevent any errors from cascading, users 
could not proceed until they successfully completed the 
current segment. If the user made an error a short ‘oops’ 
sound played. Users were instructed that their circles could 
be drawn casually, but should be larger than the dot and 
smaller than the box. Drawing the circles was thus a quick 
and fluid inking movement, much like jotting down a quick 
note, rather than a visually guided steering task or precise 
pointing task. If the circle did not contain the dot, or if it 
started outside the box, it resulted in an error.  

 
Fig. 5. Alternation task in progress (with Pen mode marking 
reminders for Persists, which requires pen reselection).  

For alternation tasks (Fig. 5), the task pattern is iCiCi, 
where segment 2 is a command, segment 3 is ink, and 
segment 4 is a different command. During pilot testing, 
users would sometimes skip the ink (segment 3) if the two 
C subtasks were the same due to a tendency to chunk two 
identical commands together. Thus, we used different 
commands for the C segments of the iCiCi pattern. 

 
Fig. 6. Screen layout for experiment, with a user marking from 
the lagoon (lower left). The digits at right were not used. 

The stimulus for the trial was not revealed until the user 
tapped on a Start button (Fig. 6, top center). Each stimulus 
shows the user where the command is in the marking menu. 
These cues appear above the dots so that the user’s hand 
does not occlude them during the task. These are just static 
cues, not active icons (we trained users not to tap on them). 
For the dots that only required inking, we omitted the 
border around the top half of the box to emphasize that the 
task segment was different and required returning to the 
“normal” inking state.  However, for the Persists condition 
only, we did provide reminders of how to reselect the pen 
(Fig. 5). The dots were color-coded using the dominant 



 

color from the icon for its mode. These cues are intended to 
help users anticipate the sequence of actions, instead of 
reacting to the stimuli one box at a time. 

We also provided users with clear visual feedback of the 
currently selected mode. When users completed a marking 
selection, the icon for the marking command remained on 
the screen as continuous feedback of the selected tool. Each 
mode also provided a custom tracking cursor.  

The center of the lagoon icon was 125 pixels from the left 
and 125 pixels from the bottom (Fig. 6). The lagoon mark 
had to start within a 50x50 pixel square around this point. 
The first stimulus dot was 104 pixels from the left and 363 
pixels from the top. Each dot was separated by 159 pixels.  

Experimental Design 
Independent variables were MenuType (Local Marking, 
Lagoon), Behavior (Once, Persists, Springboard, 
SpringOnce), and TaskType (Alternation, Repetition, or 
Baseline). Because fully crossing all of these factors results 
in too many conditions for a single subject to complete in a 
one hour session, we ran Behavior and TaskType as within-
subjects factors and MenuType as a between-subjects factor.  

We employed a 4x4 Latin square across the Behavior 
conditions to minimize order effects, with 4 participants 
each in 4 different orders (2 participants in each Order used 
the Lagoon, and 2 used the Local Marking menu). Thus in 
total, our experiment includes: 
16 Participants x  

4 Behaviors  x 
6 blocks (2 practice, 4 experimental) consisting of  

1 baseline trial + 
6 command trials (with 3 Alternation tasks + 

 3 Repetition tasks mixed in random order); 
= 42 trials (28 experimental: 4 baselines + 12 

Alternations + 12 Repetitions) per Behavior. 
= 168 Trials per subject (112 experimental)  

=  2688 total trials (1792 experimental).  

These trials include a total of 5*2688 = 13,440 dot-circling 
subtask segments (8960 experimental). Half of the 
participants used Lagoon and half used Local Marking 
menus, for 2688/2 = 1344 trials (896 experimental) in each. 

Dependent measures were completion time and error rate. 
We recorded the total trial time, which is the total time to 
complete all 5 task segments. To facilitate our keystroke 
level analyses, we also recorded separate time intervals for 
each of the 5 segments and for each elemental subtask 
contributing to the final (error-free) circling of the dot 
stimulus, i.e. the times to draw the mark, lift the pen, circle 
the dot stimulus, and move the pen between segments.  

Participants & Training 
16 right-handed users participated in the study. Most 
participants had used a tablet or a handheld, and all had 
used laptops or other mobile devices. All participants self-
reported normal color vision, and we ensured that all 
participants positioned the tablet so that they could clearly 
distinguish the different colors of the task stimuli.  

To familiarize subjects with our experimental stimuli and 
task, subjects started with a formal practice session 
consisting of 4 baseline practice trials of 5 segments each + 
4 marking menu practice trials of 5 segments each). For the 
Local Marking conditions, we trained users to invoke the 
menu on or near the dot stimulus. They continued to use the 
Local Marking menus this way throughout the experiment. 

Apparatus 
Each participant used a Toshiba Portege TabletPC, running 
Windows XP SP2 Tablet Edition, with a 24.5 x 18.5 cm 
(1024 x 768 pixel) display. The tablet was used in slate 
mode and angled by about 10 degrees using a short monitor 
stand to help users achieve a desirable viewing angle. Users 
were not allowed to hold the tablet in their lap. We used the 
Enter key of a Targus USB Numeric Keypad as the 
COMMAND button. We were not able to use the built-in 
tablet bezel buttons as they are on the right side and 
running these Toshibas in the upside-down screen 
orientation significantly degrades interactive performance. 

RESULTS 
Participants took approximately 1 hour to complete the 
experiment including all practice, experimental trials, and 
qualitative comments on each technique. 

Qualitative Results 
Participants ranked the four Behaviors according to their 
preference. Analysis of the rank data revealed a significant 
overall effect for Behavior (Friedman’s χ2

(3,N=16) = 8.1, 
p<.05). Seven of the 8 Lagoon users chose Springboard or 
SpringOnce as their favorite technique and one chose Once. 
For the 8 Local Marking menu users, 5 chose Springboard 
or SpringOnce, 2 chose Persists, and one chose Once. Note 
that participants could not contrast Local Marking with the 
Lagoon since MenuType was a between-subjects factor. 

Total Trial Completion Time 
This includes all time after tapping Start (Fig. 6) until 
circling the 5th dot stimulus in ink. We conducted a 4x3x4 
repeated measures ANOVA on 4 Behaviors (Once, 
Persists, Springboard, SpringOnce) by 3 TaskTypes 
(Baseline, Alternation, Repetition) by 4 Blocks. The 
MenuType (Local Marking, Lagoon) and Order (4 
presentation orders) were between-subjects factors.  

We used the median completion time to correct for typical 
skewing of reaction time data and to remove any outliers. 
The median was calculated for each cell of the design at the 
Behavior x TaskType x Block level for each subject. At this 
level the design has three observations per subject, so we 
discarded the best and the worst observation, leaving the 
subject’s median trial completion time for data analysis.   

Note that some of these median trials do include errors. We 
left these trials in this analysis, because the costs resulting 
from decision making, hesitations, and errors are part of 
what we are trying to measure to accurately characterize the 
true cost of command selection [5] for each technique. 
Because the user had to finish all task segments correctly to 
complete a trial, making errors never allowed users to 
complete the task more quickly. We also recorded the times 



 

for the error-free portion of each segment and used those 
times to determine the elemental building blocks of each 
technique in our keystroke-level analyses (discussed later).  

Our analysis revealed a significant effect for Behavior, 
F(3,24)=6.17, p<.005. Planned comparisons revealed that 
overall Springboard, SpringOnce, and Once were all 
significantly faster than the Persists condition (p < .05).  

TaskType was highly significant, F(1,8)=145.5, p<.001. 
Repetition tasks were faster than Alternation tasks (p<.001). 
This is a robust effect because all levels of Behavior 
(except the Once technique) required fewer tool mode 
selections for Repetitions. The Baseline was fastest (p<.001).  
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Fig. 7. Total task times from the experiment. 

Behavior x TaskType was also significant, F(1,8)=27.78, 
p<.001. This means the best mode Behavior depended on 
the TaskType, which underscores the importance of 
controlling for different task types as advocated by Mackay 
[15] and Appert et al. [2]. Once was the fastest behavior for 
Alternation tasks (p<.001). SpringOnce was significantly 
faster than both Once and Persists for Repetitions (p<.05) 
and faster than Persists for Alternations (p<.05). Although 
Springboard had the fastest absolute mean time for 
Repetition tasks, it had a higher standard deviation than 
SpringOnce. So Springboard was significantly faster than 
Once (p<.001) but not significantly faster than Persists. 

Block was also significant, F(3,24)=15.59, p<.001, indicating 
that participants became more proficient with increasing 
experience. The Block x TaskType interaction was also 
significant, F(6,48)=2.75, p<.05. This suggests the Repetition 
and Alternation tasks exhibited a stronger learning effect 
across blocks than the Baseline task. 

The Order between-subjects factor had no main effect, but 
Behavior x Order F(9,24)=1.93, p<.05 was significant. 
Investigation of the means revealed the SpringOnce-first 
Order contained the slowest participant in the experiment. 
Our impression was that this user preferred to be neater that 

most participants and therefore was more deliberate when 
circling the dots. Repeating the analysis without this user’s 
data showed the same significant results. If the 
SpringOnce-first Order resulted in a negative training 
effect, we would have expected the Springboard-first 
Order to also exhibit this effect. Since it did not, this 
interaction probably just reflects a participant effect.  

Results for Error Analysis 
A trial was an error trial if the user exhibited any mistake or 
sub-optimal behavior, such as unnecessarily reselecting the 
current mode, for any of the 5 segments. We computed the 
error rate for each Behavior and TaskType across all 4 
Blocks. Since errors were not possible in the Baseline task, 
we only have 2 levels for TaskType in this analysis. Thus 
we conducted a 4 (Behavior) x 2 (TaskType: Alternation or 
Repetition)  repeated measures ANOVA on error rate with 
MenuType and Order as between-subject factors.  

There were no main effects on error rate for any within or 
between-subjects factors. The error rates for each Behavior 
were 9.6% for Once, 10.2% for Persists, 12.2% for 
Springboard, and 11.2% for SpringOnce. None of these 
differences were significant. However, Behavior x 
TaskType (F(3,24)=3.89, p<.05) was significant. This 
interaction indicates that the SpringOnce design actually 
did succeed in reducing errors versus the Springboard for 
the Alternation task (17.7% for the Springboard versus 
11.5% for SpringOnce). However, the pure Springboard 
worked well for Repetition (6.8% errors).  

Failure to Detect any Significant Effect of MenuType 
Perhaps the most surprising result from the experiment was 
that the between-subjects factor MenuType was not 
significant (F(1,8)=0.04, p=.85). Overall, the MenuTypes 
only differed by 330ms (excluding baseline trials, 7137 ms 
for Local Marking vs. 7467 ms for Lagoon.). Prior to the 
experiment we estimated that a round trip to the lagoon 
should take about 1.5 seconds, yet experts can invoke a 
marking menu command in less than 500ms [11,13], which 
should give the Local Marking menu an advantage.  

An interaction between independent variables potentially 
could negate any main effect for an experimental factor, but 
the only significant interaction with MenuType was a 
Behavior x TaskType x MenuType three-way interaction, 
(F(6,48)=2.53, p<.05). Investigation of the means suggested 
that this interaction occurred because the Lagoon version of 
Springboard and SpringOnce tended to be faster for 
Repetition than the Local Marking versions of the 
techniques. In fact, the lowest absolute mean completion 
time for any technique in the entire experiment was the 
Springboard Lagoon for Repetition tasks, at 5938 ms. But 
even for the traditional Once and Persists mode techniques, 
which demand increased round trips to the lagoon, the 
advantage for Local Marking menus was limited. 

Another possibility is that some uncontrolled effect could 
have obscured any effect of MenuType, or that our 
experiment lacked sufficient statistical sensitivity on 
MenuType since it was a between-subjects factor. But 
because we collected detailed timing information for all 



 

elemental actions contributing to the task times, we can 
construct a keystroke-level model of what users had to do 
to complete the task and compare that to what we actually 
measured in the experiment. This model lets us account for 
all of the time that users spent completing the tasks.  

KEYSTROKE-LEVEL ANALYSIS 
Our keystroke-level analysis required three steps. First, we 
defined all of the unit actions required to perform our tasks, 
and translated these into keystroke-level models (KLM’s) 
that compute the total task time in terms of these unit tasks. 
These models omit mental pause operators [4], because we 
will estimate any mental pause times from empirical data. 

Second, we used our experimental observations from the 
Baseline tasks (Fig. 3) and the Once condition (which 
doubled as a control condition) to estimate values for these 
unit costs. These values can be plugged into our keystroke-
level models to compute an expected physical articulation 
time based on users’ performance in the control conditions.  

Third, we compared the KLM models to the observed times 
for the Behaviors in the Lagoon and Local Marking menus. 
This shows where the techniques deviate from the model, 
indicating the presence of hidden costs. These costs might 
include increased reaction time resulting from planning 
what to do next, mental pauses, or delays while the user 
attends to visual feedback after performing an action. Our 
methodology cannot attribute these costs to a specific 
cause. It just lets us deduce that a  hidden cost must exist in 
a specific portion of the task. This is sufficient to generate 
many insights as to where the bottlenecks to performance 
lie and what parts of a technique might be improved.  

Step 1: Define KLM and Compute Unit Task Costs 
A trial consisted of five subtasks (segments), each with a 
dot stimulus that the user circled with the correct tool. For 
some segments, the user already has the correct tool. The 
time AP to Apply the tool after pointing to the segment is: 

AP = (PS  + DC ), where                                (Eq.1) 
PS  = Point the pen at the segment 
DC = Draw a circle around the dot  

If the user needs to change the tool, the time MC to use the 
Menu to pick a new command is: 

MC = (PC  + DM), where                               (Eq.2) 
PC  = Point where the command will be activated 
DM = Draw the mark 

Then, it takes time AM to Apply the tool after marking: 
AM = (PM  + DC ), where                               (Eq.3) 

PM  = Point from end of the mark to the dot 
(DC  is again the time to circle the dot) 

We can now populate tables to summarize the overall costs 
for each technique by following several rules: (1) a segment 
that does not require a mode switch just takes time AP; (2) 
any task segment that requires a tool mode switch requires 
time MC + AM to complete; and (3) if the user may need to 
press COMMAND, this is noted by tallying each mode-in 
cost min and mode-out cost mout. These always come in 
pairs (min + mout) since the user eventually lets go.  

The tables below, prominently labeled R for the Repetition 
task models (Fig. 8) and A for the Alternation task models 
(Fig. 9), summarize the resulting KLM models.  

Repetition Task 
1 2 3 4 5 R i  C C C i 

R KLM’s 
Computed
total time

SpringBoard,
SpringOnce

 
 

AP

min 
MC 
AM 

 
  

AP 

  
 

AP 

mout 
 

AP 

1 (min+mout)
1 MC 
4 AP 1 AM 

Persists 
 
 

AP

min+mout
MC 
AM 

 
 

AP 

 
 

AP 

min+mout
MC 
AM 

2 (min+mout)
2 MC 
3 AP 2 AM 

Once 
 
 

AP

min+mout
MC 
AM 

min+mout 
MC 
AM 

min+mout 
MC 
AM 

 
 

AP 

3 (min+mout)
3 MC 
2 AP 3 AM 

Fig. 8. Keystroke-Level Models for the Repetition task.  

Alternation Task 
1 2 3 4 5 A i C1 i C2 i 

A KLM’s 
Computed
total time 

SpringBoard,
SpringOnce

 
 

AP

min 
MC 
AM 

mout 
  

AP 

 min 
MC 
AM 
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AP 

2 (min+mout)
2 MC 
3 AP 2 AM 

Persists 
 
 

AP

min+mout
MC 
AM 

min+mout 
MC 
AM 

min+mout 
MC 
AM 

min+mout
MC 
AM 

4 (min+mout)
4 MC 
1 AP 4 AM 

Once 
 
 

AP

min+mout
MC 
AM 

 
 

AP 

min+mout 
MC 
AM 

 
 

AP 

2 (min+mout)
2 MC 
3 AP 2 AM 

Fig. 9. Keystroke-Level Models for the Alternation task.  

Step 2: Estimate Values for Unit Task Costs 
Because the Once condition was so repetitive, it required 
very little decision making while performing the task. Thus 
the component times for Once tended to be faster than the 
other conditions. This fast pace tended to continue through 
the baseline trials that users encountered during Once. For 
our purposes, we want the KLM models to estimate the 
pure physical articulation costs of each technique. Thus in 
our experiment the Once condition, as well as the baselines 
performed during the Once condition, yielded the best 
estimates for these pure physical articulation costs. For the 
times related to drawing the mark and returning to the dot 
after marking, for each MenuType we took the average time 
for the task segments in Once that contained tool selections. 

Note that in our experimental data collection, we recorded 
each of the 5 individual time intervals defined above (PS , 
DC , PC , DM , and PM) for each of the 5 segments of every 
trial. Thus our full data set includes these 25 additional 
dependent measures, which allows us to calculate the 
expected physical articulation times (without decision or 
mental preparation costs) for each of the unit actions: 

For the Local Marking Menu (denoted with subscript m): 
PSm  = 347 ms (point to the segment) 
DCm = 433 ms  (draw a circle around dot) 
PCm = PSm  (mark in-place near dot) 
DMm = 494 ms  (draw the mark) 
PMm  = 168 ms  (move to dot after marking) 
APm=(PSm  + DCm) = 780 ms 
MCm=(PCm  + DMm) = 841 ms 
AMm=(PMm  + DCm) = 601 ms 



 

For the Lagoon Menu (denoted with subscript l): 
PSl  = 307 ms  (point to the segment) 
DCl = 440 ms (draw a circle around dot) 
PCl  = 558 ms  (point to the lagoon) 
DMl = 667 ms (draw the mark on lagoon) 
PMl  = 283 ms  (time to return from the lagoon) 
APl = (PSl  + DCl)  = 747 ms 
MCl = (PCl  + DMl)  = 1225 ms 
AMl = (PMl  + DC )  = 723 ms 

Thus, we can see immediately from these estimates that the 
time penalty for making a round trip to the lagoon was not 
that large. The largest advantage for Local Marking comes 
from the time to pick a command from the menu MC , with 
(1225 - 841) = 384ms being saved versus Lagoon. It only 
took users 558ms to move the pen to the lagoon, and the 
time to draw the mark on the lagoon also took (667 – 494) 
= 173ms longer. This may have been because users were 
moving the pen quickly and were still coming to a stop as 
they started drawing the mark on the lagoon. 

The small value for PMm (time to move from the end of the 
mark to the dot=168ms) confirms that users did mark close 
to the dot. However, the segments containing each stimulus 
were fairly large targets, so the time PMl  to return to the 
vicinity of the stimulus from the lagoon was only 283ms, 
just 122ms more than PMm for the Local Marking menu. 

Step 3: Compare Computed Costs to Observed Costs 
Reaction Time 
We estimated the time required to react to the stimulus for 
each MenuType. The time to move from the Start button to 
begin circling the dot in the first segment includes the time 
to physically move the pointing device plus the unknown 
reaction time Rt. We know the time to point from the Start 
button to the first dot must be a minimum of PSl  = 307 ms 
(the average time in the Lagoon conditions to point to the 
next dot when no tool selection was required). If we 
attribute all of the remaining time to reaction time, this 
gives us a conservative estimate, yielding average reaction 
times of Rtl = 434ms for the Lagoon and Rtm = 643ms for 
Local Marking, favoring Lagoon by 209ms.  

Mode Switching Time from Pressing the COMMAND Button 
For the mode switching time (min + mout), [14] reports 
139ms for their nonpreferred hand button technique. From 
our data, the KLM for the Repetition task predicts the Once 
technique with the Local Marking menu takes: 

= 3MCm + 2APm + AMm = 5886 + 3(min+mout) (Eq.4) 
The actual value we observed in our experiment for this 
condition was 6946 ms, which includes Rtm =  643 ms. 
Assuming that all of the unaccounted time is due to 
pressing the button, we solve: 

5886 + 3(min + mout) = 6946 – 643, yielding       (Eq.5) 
 (min + mout) = 177ms 

This agrees fairly closely with Li et al. [14] and our task 
was more complex so it makes sense that mode switching 
time could have increased slightly. Thus we will use 
(min+mout) = 177ms for both Local Marking and Lagoon, 
and we will assume min ≈ mout = (177 / 2) = 88.5 ms. 

Computed Costs: Average Total Trial Times 
We can now calculate the average total trial times we 
would expect based on the unit task times. To do this, we 
compute the sum of the KLM models for all 4 Behaviors 
and the 2 tasks (Repetition and Alternation): 

Local Marking expected average trial time MT :    (Eq.6) 
MT= [(17MCm + 23APm + 17AMm)+ 17(min+mout)] / (4*2) 
      = 5758ms total (5306ms excluding min+mout) 

The Lagoon conditions require fewer (min+mout) actions 
because they do not use the button for Once or Persists. 
Furthermore, we observed that for Springboard and 
SpringOnce, users tended to press the button while moving 
the pen to the lagoon. Thus, it seems likely that some or all 
of the min mode-in cost for the Lagoon occurs in parallel 
with the PCl unit task, so we only count mout time for the 
Lagoon conditions where the button was needed: 

Lagoon expected average trial time LT :             (Eq.7) 
LT = [(17MCl + 23APl + 17AMl) + 6(mout)] / (4 * 2) 
      =  6354ms total (6287ms excluding mout) 

Erosion of the Time-Motion Benefits for Local Marking 
Without the button presses, the models above predict the 
advantage for Local Marking should be (6287-5307)= 
980ms. This is the theoretical time-motion efficiency 
advantage that Local Marking menus should exhibit due to 
elimination of round trips, as reflected in the smaller values 
for its MCm and AMm unit task costs compared to MCl and 
AMl for the Lagoon. But once we consider the (min+mout) 
button presses, this advantage is reduced 310ms due to the 
increased button press costs for Local Marking. Adding in 
the 209ms increased reaction time further undermines the 
advantage for Local Marking, reducing the theoretical 
980ms advantage by a total of 519ms to yield a net 
predicted advantage of only 461ms compared to Lagoon.  

This agrees quite closely with the average Local Marking 
vs. Lagoon total trial time difference of 330ms that we 
observed in our experiment, leaving only 131ms 
unaccounted for. This small remaining difference may 
result from limitations of our models, the occasional time 
that participants lost due to errors, or other random 
between-subject variations. Thus, altogether these analyses 
confirm that it was unlikely we could have observed a 
significant advantage for Local Marking menus for our 
experimental task.  

Mental Preparation Costs in the Mode Behaviors 
We can identify hidden costs in the Once, Persists, 
Springboard, and SpringOnce techniques by comparing the 
observed times for each segment to the values predicted by 
our models. For this analysis, for each task segment, we 
computed the sum of all the times for command selection 
(if any) and circling of the dot stimulus in the correct mode.  

Fig. 10 shows the results. Due to random deviation from 
the average unit task times, users sometimes completed 
subtasks faster during Once than our models predicted. For 
Alternation tasks, the Springboard and SpringOnce designs 
both appear to require extra decision making time during 
the two C command subtasks, but despite this were still 



 

faster overall than Persists. This suggests that Persists (and 
Once) are mostly constrained by physical articulation time, 
whereas the bottleneck for Springboard and SpringOnce is 
decision time. For Repetition tasks, Persists, Springboard, 
and SpringOnce all appear to have a mental set-up cost in 
segment 2 (the first command C) as users decide whether or 
not to use the tool multiple times in a row.  
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Fig. 10.  Difference in observed times vs. computed times for 
each Behavior and MenuType. The vertical axis shows subtask 
segments 1 (top) to 5 (bottom). Time (ms) is horizontal axis.  

DISCUSSION 
Can Local Marking Perform Better? 
Our models suggest that Local Marking would have fared 
better if no movement had been required to proceed to  the 
next task segment. The Local Marking menu defined the 
time to move to the location where the mark is drawn as 
PCm = PSm =347ms, which is just saying that it is the time to 
point to the next segment. If the user can keep working in 
the same spot, PCm would drop to some minimum time 
needed to lift the pen between commands, say 100ms. In 
this scenario our models predict that the local marking 
menus would gain another 1200ms performance advantage 
over the Lagoon, because the round trip time is still 
required to pick a command with the lagoon and cannot be 
eliminated. Thus, in a sense the time to move between the 
experimental stimuli was an added cost for Local Marking, 
but not for the Lagoon, because the round trip time absorbs 
the time needed to move between stimuli. It is not clear 
how often real-world tasks would have sufficiently high 
locality of reference for the Local Marking menu to avoid 
this ‘extra cost’ and gain the calculated benefit of 1200ms.  

We can also consider N repetitions of a command rather 
than just 3 repetitions. Our observed time for the Local 
Marking menu’s Persists condition was actually slightly 
slower than Once even for Repetition tasks (Fig. 7). By 
generalizing the model for the Persists repetition task in 
terms of N, the number of commands performed in a row, 
we can solve for N and determine that the break even point 
for Persists is N=4.8, so at least 5 repetitions would be 

necessary for the Persists technique to be worthwhile with 
the Local Marking menu. Similar calculations show that 
our Springboard designs had paid for the extra set-up time 
to invoke them by the second command invocation on the 
Lagoon and by the third command for Local Marking.  

We can also consider use of round-trip designs such as the 
lagoon on larger displays or for tasks that require greater 
precision of pointing. For example, if we double the round 
trip times PCl and PMl, this would increase the Lagoon’s 
average task times for our experimental tasks by 
approximately 2 seconds overall, which again would 
provide a scenario where Local Marking offers a benefit. 

We anticipate that Local Marking may have increased 
benefit if the starting location of a mark chooses the object 
to act upon, because it integrates selection of an object with 
command selection [3,9]. Like right-click, this limits the 
commands offered in a menu to those valid for the selected 
object. For these reasons, our current results should not be 
extrapolated to commands that require a prior selection. 

Finally, localized user interfaces (whether marking menus 
or something else) may offer benefits to users that were not 
captured by our experimental task. For example, localized 
interfaces may reduce the physical effort needed to move 
around the screen. Recent results suggest they may also  
prevent visual diversion of attention from one’s work [7].  

Design Issues for the Springboard 
There are several design questions for the Springboard:  
Does a tool stay selected across invocations? Three users 
commented that the Springboard Lagoon should reactivate 
the prior tool if they hit COMMAND and stroke the pen 
without going to the lagoon. We find this feature works 
well (see video). It allows users to quickly interleave inking 
with another mode, thus facilitating tasks such as panning 
while annotating a document, or going through a document 
with a highlighter while jotting down notes. It may not be 
possible to support this desired feature for Local Marking. 
How to provide a spring-loaded control for the 
nonpreferred hand on a tablet? Our users found the Enter 
key acceptable for use on a supporting surface, but felt that 
COMMAND should be part of the tablet. We are currently 
exploring placement of a button on the Tablet PC bezel, as 
well as other spring-loaded control designs. A control 
should be accessible for both left and right handed use from 
any of the 4 screen orientations, and it should not cause 
inadvertent activations. Also, some new Tablet PC designs 
make the keyboard more accessible, and some Wacom 
desktop tablets offer side buttons suitable for COMMAND. 
Are other design hybrids with the Springboard possible? 
Our KLM models show that Springboard and SpringOnce 
can theoretically go as fast as the Once technique for 
Alternation tasks (Fig. 9), yet in our experiment users were 
not able to realize this level of performance. It is possible 
that experts could use the techniques more efficiently, or 
further design hybrids may be possible. A lagoon that 
always stays active could support both the Once behavior 
and the SpringOnce behavior. If the user employs the 



 

lagoon without the COMMAND button, the lagoon could 
default to the Once behavior, which is easy for novices to 
learn, and is efficient in many situations. This is also useful 
if a device lacks COMMAND, or if the user eschews 
COMMAND due to fatigue or laziness. But if the user instead 
presses and holds COMMAND prior to completing the first 
application of the tool mode, this could trigger SpringOnce.  
Does the lagoon stay visible when inactive? We tried a 
fully disappearing lagoon, but it seems important to have a 
visual target in order to make a ballistic motion from the 
work area to the lagoon. Without a target to aim for, users 
must move to the general area, and then make a corrective 
movement when the lagoon appears, which might reduce 
performance. Future studies should investigate this further. 

CONCLUSION AND FUTURE WORK 
Our experimental results showed that users preferred 
Springboard and SpringOnce to the status-quo Once and 
Persists techniques. One user felt strongly that using the 
button was a pain, but most users liked having a choice that 
let them control how long a mode stayed active. Although 
Springboard and SpringOnce performed similarly in the 
experiments, the SpringOnce design did tend to result in a 
lower error rate than the Springboard, particularly for 
Alternation tasks. This suggests that SpringOnce can 
provide an effective mechanism for users to manage 
multiple tool modes from a single spring-loaded control.  

The new designs were faster than Persists overall and were 
faster than Once for Repetition tasks. However, Once 
remains the technique of choice for alternation; in this case 
it would be hard to beat Once, unless the user keeps 
interleaving the same command and uses the Springboard 
design option suggested above where the tool remains 
selected across invocations of the lagoon. Thus, exploration 
of design hybrids with Once offers a promising avenue for 
mode behaviors that can support a variety of task contexts. 

Our keystroke-level analyses showed that the Local 
Marking menu has a time-motion efficiency advantage in 
theory, but in practice this advantage is smaller than we 
anticipated and is eroded by several ancillary costs, such as 
mode switching and reaction time, that appear to favor the 
Lagoon menu design. Failing to find a statistically 
significant difference cannot prove that there is no 
difference between the Lagoon and the Local Marking 
menu. But the failure to detect this effect combined with 
the results of our keystroke level analysis, which suggest 
why Local Marking failed to significantly outperform the 
Lagoon, together make a convincing case that it is difficult 
for the Local Marking menu to provide a substantial benefit 
in the task context that our experiment studied.  

Thus, elimination of round trips does not necessarily 
improve the speed of tool switching on tablet computers. 
Our hope is that our results and methodology can offer 
better insights into factors influencing performance for pen 
and gesture interfaces. We must continue to explore 
alternative task contexts, novel localized interface designs, 
or other metrics of user performance where pen and gesture 
interfaces can offer significant performance advantages.   
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