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ABSTRACT 
The hardware-inspired volume user interface model that is 
in use across all of today’s operating systems is the source 
of several usability issues. One of them is that restoring the 
volume of a muted application can require an inappropri-
ately long troubleshooting process: in addition to manipu-
lating the application’s volume and mute controls, users 
may also have to visit the system’s volume control panel to 
find and adjust additional controls there. The “flat” volume 
control model presented in this paper eliminates this and 
other problems by hiding the hardware-oriented volume 
model from the user. Using the flat model, users use one 
slider per application to indicate how loud they want the 
respective applications to play; the slider then internally 
adjusts all hardware volume variables necessary to obtain 
the requested output. By offering a single point of control 
for each application, the flat model simplifies controlling 
application volume and restoring muted applications. In 
our studies, participants completed all four volume control 
and mixing tasks faster and with less error when using the 
flat model than when using the existing hardware-oriented 
volume control model. Participants also indicated a subjec-
tive preference for the flat model over the existing model. 
Categories & Subject Descriptors: H5.2 [Information 
interfaces and presentation]: User Interfaces. - Graphical 
user interfaces. 
General Terms: Human Factors, Design. 
Keywords: Audio, sound, volume control, user interface.blutwurst 

INTRODUCTION 
Imagine the following scenario. In the middle of a presen-
tation, the presenter tries to play a video clip. When hitting 
‘play’ on the software video player, the video starts playing 
but the audio remains silent. In order to fix the problem, the 
presenter cranks up the volume slider in the video player, 
but without success. When realizing that it may not be the 
player causing the problem, the presenter opens the sys-
tem’s volume control panel and finds the state shown in 
Figure 1. The presenter notices that the “master volume” 
slider (labeled “Volume Control”, 5) is set to zero, which 
would explain why the sound did not play. The presenter 
then cranks the slider all the way up, but still, nothing. Af-
ter examining the corresponding mute checkbox (6) and the 

state of the wave volume slider (3) the presenter notices 
that the wave channel is muted (4). Unchecking this 
“Mute” checkbox finally allows the audio to play (although 
the audio now plays much louder than intended, as the ap-
plication volume and wave volume sliders were set to their 
maximum values during the troubleshooting process.) 
The problem we are addressing in this paper is that this 
process takes more time and effort than necessary. 
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Figure 1: Current volume control model: application 
audio output is only active when its volume slider (1) 
and wave and master sliders in the control panel 
(3, 5) are set to non-zero values and the three mute 
check boxes (2, 4, 6) are unchecked. 

A look under the hood 
We claim that the described problem is caused by the fact 
that existing volume control interfaces expose the volume 
control structure of the computer’s sound card to the user. 
As shown in Figure 2, the volume variables in today’s sys-
tems form a hierarchy. Before a sound produced by an ap-
plication reaches the speakers, it is affected by all sliders 
and mute widgets in the path between that application and 
the speakers. The actual loudness of an application (we will 
use the term “loudness” to describe the final audio level 
that is sent to the speakers and “volume” for internal vol-
ume variables) is the product of all volume variables along 
the path1. Determining how loud an application actually 
                                                           
1 In addition, there is often an analog knob on the speakers, which 

is typically not controllable via software on today’s average PC. 
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plays thus requires users to read all volume variables along 
the path and mentally multiply them. 
An application is muted whenever at least one of the multi-
plied volume variables along its path is zero, i.e., a slider 
set to zero or a checked mute button, no matter what the 
state of the other variables in the signal path. Detecting that 
therefore requires checking all these variables. Restoring a 
muted application requires restoring all muted volume vari-
ables along the path. These cases may also require users to 
access the system’s volume control panel. 
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Figure 2: In the existing, hierarchical volume control 
model (here MS Windows XP™), application sound 
volume is reduced at up to six points along the signal 
path (plus the volume knob at the speakers). 

While we will use muting as our main scenario throughout 
the paper, there are other volume control tasks that are 
complicated by the hierarchical model. The hierarchical 
model makes it difficult to set an application to a known 
loudness, as this can require changing multiple variables 
along the path. Also the task of making an application 
louder can become complicated; in cases where the appli-
cation volume maxes out, users need to increase the master 
volume instead, which in turn has a side effect on the loud-
ness of other applications. We will return to these scenarios 
later in this paper and also in the user study section. 
Even though some of today’s operating systems use a sim-
plified interface, e.g., one that hides the sound card channel 
layer (e.g. Apple Macintosh), they all have the notion of a 
master volume. Thus, the described problem exists across 
platforms. 
What to do? 
This hierarchical model and the resulting multiplicative 
volume model have desirable properties from an engineer-
ing point of view. For example, they offer a wide dynamic 
range and, properly setup, can maximize the signal-to-noise 
ratio. However, exposing this architecture to computer us-
ers results in complexity that, over time, can lead to addi-
tional user effort and error conditions. The professional 
sound mixing equipment that first used this type of hierar-
chical volume control model was designed by and for audio 

experts, but today’s typical computer users do not typically 
fall into this category.  
We therefore propose a new volume control interface 
model—one that hides the internal hierarchical structure of 
the sound card from the user. As we show in this paper, 
this allows users to monitor and control the loudness of 
applications more efficiently and especially solves the mut-
ing problem. At the same time, the proposed model 
matches and sometimes outperforms the sound quality the 
traditional model offers. We begin by presenting a walk-
through of the flat model and its user interface. Then we 
briefly look at the related work, followed by details about 
design and implementation of the flat volume control 
model and methods for handling legacy issues. Finally, we 
present the results of the studies we conducted and con-
clude with a discussion of our findings. 
FLAT VOLUME CONTROL 
The main benefit of the flat model is that it manages the 
volume hierarchy for the user. This is realized by changing 
the semantics of all volume sliders in the system to solely 
represent loudness. Under the traditional model the volume 
slider in Windows Media Player defined a single link in 
Media Player’s volume path; in our redesign as a loudness 
slider it now defines how loud Media Player plays, i.e. the 
value of Media Player’s volume path as a whole. By ma-
nipulating the loudness slider, users indicate how loud they 
want Media Player to play, but without defining how this is 
supposed to be accomplished. It is the loudness slider itself 
that then determines the best way of realizing the requested 
loudness in terms of hardware volume variables and that 
makes the necessary changes. This delegation reduces the 
user’s load and obtains equal or better audio quality, as the 
slider automatically optimizes the system’s signal-to-noise 
ratio. We will describe the algorithms that accomplish this 
in detail in the implementation section. 
If we redrew the diagram from Figure 2 for the flat model, 
we would see that the sound card channel and master layers 
are gone; application loudness widgets are now directly 
connected to the speakers. The hierarchy has been replaced 
with a flat structure—thus the name of our approach. 
The flat volume control panel 
When switching to the flat model, the semantics of all vol-
ume control widgets across the system change, including 
those located in the volume control panel. This requires 
some changes in the control panel’s user interface. Figure 3 
shows a screenshot of our volume control panel prototype. 
This control panel allows users to perform three types of 
interactions. First, sliders, one per application, allow users 
to adjust the loudness of the respective application. Second, 
the “all applications” thumbwheel allows users to adjust 
the loudness of all applications at once. “Spinning” the 
wheel makes all application sliders move up and down, as 
illustrated by Figure 4. Third, clicking the “mute all” 
pushbutton visibly brings all sliders to zero and makes the 
mute button change its label to “restore all”. Clicking the 
mute button again restores the values of all sliders to their 
previous states. 
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Figure 3: The flat volume control panel. Application 
sliders represent the loudness of that application. 
Thumbwheel and mute affect all application sliders. 
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Figure 4: Adjusting the volume of all applications at 
once using the thumbwheel. (a b) Dragging the 
wheel to the right makes all sliders go up proportion-
ally. When the first slider maxes out all sliders stop; 
this preserves the volume mix. (b c) dragging it to 
the left makes all sliders go down proportionally until 
they all hit zero. (c d) Clicking the “restore all” 
push button restores to the last non-zero setting. 

It is essential to the flat user interface, that widgets cannot 
only be manipulated directly, but that they also track the 
value of the variable they represent and update themselves 
if that value changes. This is necessary because the loud-
ness represented by one widget can be affected by another 
widget. Clicking “mute all”, for example, can change the 
value of all other loudness variables in the system. Using 

widgets that continuously check the variable they represent 
assures that the state of the interface remains consistent. As 
an example, when the user operates a loudness slider in an 
application, the corresponding slider in the control panel 
moves in sync and vice versa. Moving the thumbwheel has 
an impact on the loudness of many applications and conse-
quently, all sliders representing application volume 
move—in the control panel (Figure 4a b), as well as in the 
applications. When an application’s mute button is clicked, 
the loudness slider of that application jumps to zero and 
when mute is clicked again the slider restores itself. When-
ever an application ends up having zero loudness, its mute 
button reflects that by changing its state accordingly. If all 
applications have zero loudness, e.g., because the thumb-
wheel was spun all the way down (Figure 4b c), the main 
mute changes its state to reflect that. Any way of unmuting 
the system, whether it is hitting “restore all” (Figure 4c d) 
or dragging an application loudness slider up, restores the 
mute button’s “mute all” face. 
The flat model solves the muting problem 
In the traditional volume control model, the loudness of 
any application may be reduced by other volume variables, 
such as the master volume. Sliders therefore only mean 
“the loudness of this application is at most x”. In the flat 
model, however, sliders mean “the loudness of this applica-
tion is x”. In the state shown in Figure 3, for example, 3D 
Pinball is playing at about 80% loudness, Windows Media 
Player at ~40%. One of the main benefits of this paradigm 
switch is that it solves the muting problem. Detecting that 
an application is muted becomes straightforward; an appli-
cation is muted if and only if its loudness slider points to 
zero. Restoring a muted application is equally straightfor-
ward. Any muted application can be restored by dragging 
the application slider up—the slider will adjust all volume 
variables necessary. As a result, the need to access the con-
trol panel and to check multiple widgets is eliminated. 
The flat model also addresses the two other scenarios men-
tioned earlier. First, since loudness sliders can increase 
channel and master volume variables when necessary, us-
ers can now always access the full possible range of output 
loudness from inside their applications. Second, the flat 
model establishes a fixed mapping between slider state and 
loudness, which allows users to set an application to any 
known loudness, such as “the loudness for giving slide 
presentations in this conference room”, by setting its slider 
to a remembered position. 
RELATED WORK 
Sound is in wide use in human-computer interaction. 
Sound allows for eyes free interactions. Since users can 
detect sounds rapidly, sound was found highly effective for 
monitoring applications [11] as well as various types of 
notification [20]. In other areas, sound has been used to 
make VR environments [14] and reading more immersive 
[2], and to help improve the usability of devices, e.g., by 
helping users navigate hierarchical structures [5], acquire 
buttons on small screen devices [4], or recognize the func-
tions of products [12]. 



 

 

Along with pitch, location, and semantic context, sound 
volume is one of the main cues that help users distinguish 
sound sources [19]. Controlling volume therefore plays a 
major role in audio-only media spaces [18], where volume 
has been used to denote proximity between participants in 
conversations [1]. Various interface strategies have been 
suggested for controlling volume, such as hand gestures [7, 
10], bar code readers [13], or physical widgets connected 
to a computer [8]. A broad interest in controlling volume in 
a convenient way has created a market for such products 
(e.g. [9]). 
The widgets deployed in the volume control interfaces pre-
sented in this paper have been studied in various contexts. 
Interaction techniques inspired by a paint metaphor have 
been proposed as means for efficiently manipulating larger 
numbers of sliders [3]. The design of mute buttons is sub-
ject to the discussion of how to visualize the state of a but-
ton [15, 6]. Thumbwheel widgets have been used to enter 
variables on an infinite range, e.g. in flight simulation [16] 
and 3D viewers (e.g., examinerViewer, www.sgi.com). 

THE DESIGN OF THE FLAT VOLUME CONTROL PANEL 
In this section, we take a closer look at the design shown in 
Figure 3 and point out design alternatives. Before we focus 
on the widgets that form the interface of the flat architec-
ture, we give a quick overview of other aspects of the flat 
control panel (Figure 3), i.e., the changes that make it dif-
ferent from the Windows XP control panel shown in Figure 
2. These changes are independent of the flat concept, so 
they may also be applied to a non-flat control panel or re-
moved from the flat control panel altogether. 
General design changes 
First, the control panel shown in Figure 3 does not expose 
sound card channels, such as “wave”. The primary reason 
for that is that today virtually all PC sounds go through the 
wave channel, so that all other channels have become obso-
lete. Hiding channels reduces clutter and brings this dialog 
up to par with the Apple Macintosh, the designers of which 
chose not to expose sound card channels in the first place. 
Note that the flat volume control concept works with vol-
ume hierarchies of any depth, so it remains applicable even 
if sound card channel volume was exposed. 
As an alternative to sound card channels, and unlike the 
Windows XP control panel, the flat panel lists “Now Play-
ing and Recently Playing Sounds”, i.e., applications. This 
provides users with direct access to application loudness 
even including applications that do not offer volume con-
trol in the application itself, such as the 3D Pinball game in 
Figure 3. The implementation section of this paper explains 
how this is implemented using so-called ‘shims’. 
Finally, the control panel was uncluttered by moving appli-
cation-specific mute buttons and all balance sliders into an 
“advanced mode” panel. Layout and graphical design were 
changed as well. 

The thumbwheel and the mute button visuals 
Figure 5a shows a design alternative we explored, called 
flood mark design. The input capabilities of this widget are 

equivalent to the thumbwheel shown earlier. However, this 
design offers additional functionality by providing a flood 
mark, a vertical line that always remains in touch with the 
knob of the loudest application. The flood mark gives users 
a visual indication for the current overall loudness of their 
system. The attempt to drag an application slider beyond 
the flood mark makes the flood mark slider go up in paral-
lel (Figure 5a b, the topmost of the three sliders was 
dragged up); lowering the loudest application makes the 
flood mark slider follow until it hits the knob of another 
application slider. Adjusting the flood mark slider itself 
scales all application sliders proportionally (Figure 5b c). 
Despite the flood mark design’s potential for contributing 
to a more powerful interface, we chose to pursue the 
thumbwheel design when early usability testing indicated 
that the additional information provided by the flood mark 
made this design slower to learn and read than the thumb-
wheel design. Also, some users who had extensive experi-
ence with the traditional volume control panel falsely iden-
tified the slider as a traditional master volume slider, which 
caused them to read application loudness incorrectly. 
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Figure 5: The ‘flood-mark’ on the control panel de-
sign allows users to read how loud their system is. 

The point behind using a thumbwheel is that thumbwheels 
allow users to manipulate a variable without the state of 
that variable being exposed; for our purposes, the thumb-
wheel is basically a slider with the knob being deliberately 
hidden. In our design, this reduces the cognitive load for 
the user and avoids the risk of misinterpretation. The flat 
model provides visual feedback by moving application 
sliders instead. 
Our initial concerns that Windows users would be unfamil-
iar with thumbwheels went away during our usability study 
(see the respective section). Our participants seemed to be 
fairly familiar with thumbwheels, which might be ex-
plained by the fact that many consumer devices, such as 
cell phones, Sony PDAs, and Microsoft mice utilize them. 
The visual design motivation of the “Mute all” button is 
similar to the thumbwheel. Since all relevant loudness in-
formation is contained in the application sliders, there is no 
need for users to read the state of the mute button. In order 
to discourage users from reading the button, we gave it the 



 

 

visual appeal of a push button—a widget that, unlike 
checkboxes, is generally used as a pure input widget [15]. 

IMPLEMENTATION AND ALGORITHMS 
Adjusting the loudness of a single application can require 
the flat system to apply changes to a larger number of vol-
ume variables in the underlying volume variable hierarchy. 
Imagine, for example, that, while the overall system is 
muted, a user unmutes an application by dragging its appli-
cation slider up. This requires the flat system to deactivate 
the main mute, but to prevent other applications from start-
ing to play as well the flat system also needs to mute all 
other applications. In this section, we describe the system 
design and algorithms that accomplish this. 
Components: In order to be able to make global adjust-
ments, all loudness computation is done from within a cen-
tral program that maintains back-and-forth communication 
with all loudness widgets, whether in the volume control 
panel or an application. This communication is built into a 
customized loudness slider; applications that use that slider 
are automatically loudness-enabled. 
Data structures: All computation is based on two main 
data structures, i.e., hardware-oriented volume and flat 
loudness. Hardware-oriented volume is a tree structure that 
contains the variables shown in Figure 2; mute is repre-
sented as variables that take on the values 0% and 100%. 
Flat loudness uses the same hierarchical structure, but dif-
ferent semantics. Leaves in the tree represent application 
loudness; nodes are defined as the maximum of their chil-
dren. Leaves and nodes determine the value of the interface 
widgets each of them is associated with. By definition, a 
mute widget is muted if the associated variable is zero. 
When the flat system is launched, it reads the hardware 
volume state and converts it to flat format. From then on, 
volume is managed in flat format. Whenever loudness is 
adjusted, the flat format is translated to hardware-oriented 
format and sent to the system’s audio API in order to make 
the changes audible. 
Algorithms: Hardware-oriented volume is converted to flat 
loudness by multiplying node values by their parent’s value 
in a top-down traversal and then setting all nodes to the 
maximum of the values of their child nodes in a bottom-up 
traversal. The back conversion is done by dividing all node 
values by their parent’s value in a top-down traversal. 
When the user adjusts the loudness of some node, the flat 
structure preserves its consistency by repairing the path 
from the node to the root, as well as the node’s sub tree.  
Note that this algorithm explains all the behavior described 
in the interface walkthrough, such as the tight coupling 
between mute and sliders or the behavior of the flood mark, 
which is simply coupled to master volume. The hardware-
oriented volume states created by this algorithm have the 
following properties. The master volume is always mini-
mized, the wave channel is set to a constant 100%, all other 
channels are muted, and application volume variables are 
always maximized. This optimizes the system’s signal-to-
noise ratio—better than a typical user might configure. 

The current status of our implementation is that the volume 
control panel shown in Figure 7 is implemented in Win-
dows native code, while the add-ons required for the flat 
volume control model are implemented as prototype code 
(Macromedia Flash) to allow for more efficient experimen-
tation with different algorithms and interfaces. 

DEALING WITH LEGACY ISSUES 
Implementing the full extent of the flat volume control 
model requires the participation of applications and volume 
control panel. This would suggest that introducing the flat 
model would face a huge hurdle, as it is unlikely that a user 
would upgrade the operating system and all applications at 
the same time. Fortunately, this hurdle can be overcome by 
the use of application ‘shims’ and ‘flood mark sliders’. 

Legacy applications in a flat system 
The handling of legacy applications depends on their vol-
ume control capabilities. Applications that produce sound, 
but offer no volume control interface are particularly easy, 
as the flat system can simply manage loudness for them. 
Legacy applications with internal volume control interface 
need to be kept in sync with the flat system. While the flat 
system cannot control user interface elements inside the 
legacy application (volume control widget inside the appli-
cation may therefore at times reflect an incorrect loudness 
value), the flat system can still control the application’s 
volume and thus apply the flat model. For that purpose, the 
flat system uses so-called application compatibility shims. 
Shims are callback functions inserted into the get and set 
volume functions that applications call. While shims are 
active, legacy applications effectively communicate with 
the flat system rather than the sound hardware, which al-
lows the flat system to manage loudness for the application. 
This also allows the user to adjust the application’s loud-
ness through the control panel. 

Flat applications in legacy operating system 
The opposite case, a flat application running in a legacy 
system, is of particular interest, as it allows deploying the 
presented concepts on a per-application basis—an easier 
step than adoption on an operating system-wide scale.  
The slider inside a flat-enabled application always repre-
sents loudness, also when running in a legacy operating 
system. If necessary, the slider itself now increases the sys-
tem’s master volume and mute to achieve the requested 
loudness. The only difference compared to a full flat im-
plementation is that the flat application cannot establish the 
shim mechanism and thus cannot prevent other applications 
from getting louder in that case. In order to warn users of 
this side effect, sliders may optionally display a little hori-
zontal line across the slider (Figure 6a) to indicate: “Drag-
ging the knob beyond this line will increase the loudness of 
all other applications.” This line is called flood mark—
vaguely related to the flood mark control panel design pre-
sented earlier (but not subject to its usability issues). Drag-
ging the slider knob beyond the flood mark drags the flood 
mark with it (Figure 6b c). Dragging the knob back down 
leaves the master volume unchanged (Figure 6c d). This 



 

 

prevents reducing the loudness of one application from 
reducing the loudness of or muting others. Flood marks can 
be complemented with a handle, shown as a small rectangle 
attached to the flood mark. By dragging the flood mark 
users adjust the master volume directly (Figure 6d e). 

a b c d e  
Figure 6: (a) A flood mark slider consists of a slider 
and a flood mark that warns users “exceeding this 
loudness will increase the loudness of other apps”, 
(b-e) walkthrough. 

PILOT STUDY 
Before conducting our actual user study, we carried out a 
pilot study to get a first impression of the learnability and 
usability of the flat volume control concept and our control 
panel prototype and to identify potential usability bottle-
necks. Moreover, we wanted to get a general sense of 
whether the flat volume concept combined with the other 
design changes described earlier were perceived as im-
provements over the volume control panel of the currently 
most widely used operating system. We therefore com-
pared our flat volume prototype with the volume control 
interface of Microsoft Windows XP. 
The XP interface was implemented as a Windows XP sys-
tem running three sound sources—Windows media player, 
3D Pinball, and Windows new message notifications. The 
flat interface offered identical functionality, but its sliders 
represented loudness and it used the control panel shown in 
Figure 3 in a desktop with matching visuals (Figure 7 
shows a screenshot of that desktop, but with a different 
control panel). Desktop, control panel, and all relevant ap-
plication functionality were simulated using Macromedia 
Flash. Both interfaces were run on a PC running Windows 
XP on a 20” LCD screen at 1024x768 pixel resolution. 
Seven participants were recruited from the larger Puget 
Sound area. All were fairly experienced Windows users 
and had used their PCs for sound and audio purposes, e.g., 
playing music via ripped format, listening to internet radio, 
etc. All participants were familiar with the standard Win-
dows XP volume control panel. 
During the study, participants received verbal instructions 
via a voice connection and we observed the participant’s 
actions from behind a two-way mirror. Participants re-
ceived no training. We started by asking participants to 
make the PC, which was currently muted, play sounds. 
Then we asked them to increase the volume of the CD. 
Next, we called them on the phone, on which we hinted 
that we couldn’t hear them very well and if necessary 
prompted them to turn down the volume. After the phone 
call ended we asked them to restore the volume. We then 

asked them to turn all volume up or down a little. After 
participants had completed this walkthrough, we encour-
aged them to explore the volume control panel and applica-
tion volume controls at their own pace. Then we repeated 
the same sequence with the other interface. At the end of 
the study, we interviewed participants and assessed their 
comprehension of the involved interface elements. The 
study lasted about 30 minutes. 

Results 
All seven participants were able to complete all tasks in-
volved in the walkthrough with either interface. It was ob-
served that participants had no trouble operating the flat 
interface, despite their lack of familiarly with this interface 
style. The flat interface received a number of positive com-
ments. Most relevant for this study, all participants recog-
nized and liked the functionality of the thumbwheel and the 
fact that it raised or lowered the volume sliders of all appli-
cations in unison. When explicitly asked whether the fact 
that sliders moved at different speeds (this was caused by 
the proportional slider motion, see Figure 4a b) would be 
strange, participants disagreed and stated that this behavior 
was logical and intuitive. The additional changes were well 
received as well. All seven participants liked the fact that 
the flat control panel listed applications instead of the 
sound card channels. The application volume sliders were 
considered useful for adjusting the volume of the Pinball 
game, which by itself offered no volume control. 
The main shortcoming of the flat interface mentioned by 
the participants was the discoverability of the thumbwheel. 
All participants discovered the functionality of the wheel, 
but 6 out of 7 did not touch it during their initial explora-
tion of the control panel; in most cases, not until the part of 
the experiment were we asked them to “turn everything up 
a little”. In subsequent prototypes, we have addressed this 
issue by adding a brief 10-pixel back and forth rotation 
animation to the wheel when the control panel opens. 
All seven participants expressed a strong preference for the 
flat interface. While this did not clearly tell us which aspect 
of the new control panel was responsible for the prefer-
ence, it indicated that the design of our control panel as a 
whole was on the right track. 

USER STUDY 
With the improved thumbwheel design, we conducted a 
formal user study to isolate and evaluate only the flat vol-
ume control aspects. We did this by comparing the flat in-
terface with a system that was visually and functionally 
identical, but used the traditional hierarchical volume con-
trol system instead (Figure 7). 
Our hypothesis was that participants would troubleshoot 
volume control, restore volume, and increase volume faster 
when using the flat interface. This should result in higher 
subjective satisfaction for that interface. However, we ex-
pected the flat interface to score lower in terms of learn-
ability, as some participants would be already familiar with 
the concept behind the control interface while the flat con-
cept would be new to them. 



 

 

Interfaces: The flat interface used in this study was identi-
cal to the flat interface in the pilot study reported in the 
previous section, but it used the improved thumbwheel. 
The control interface (Figure 7) was identical to the flat 
interface except that it implemented the traditional hierar-
chical volume control model. Its sliders represented volume 
not loudness and its control panel offered a master volume 
slider and a main mute checkbox instead of the thumb-
wheel and mute push button offered by the flat interface. 
The control interface’s control panel also exposed per-
application mute checkboxes. This was necessary to allow 
users to notice and unmute applications that had been 
muted from within the application. The flat interface did 
not need to expose these, as the flat model manages mute 
indirectly through the loudness widgets. Besides this, both 
interfaces used the same visuals (Figure 7 vs. Figure 3). 

 
Figure 7: The experimental environment used in the 
pilot study and the user study, here with the volume 
control panel of the control interface. 

Participants: Seven participants were recruited from the 
larger Puget Sound area. Each participant had access to a 
Windows PC in their place of residence and used it at least 
once a month. Actual computer tenure and level of exper-
tise varied from “casual user” to “skilled daily PC user”. 
All participants indicated that they had some experience 
listening to sounds or music on the PC and all had adjusted 
the sound level of their PC multiple times in the past either 
through software or hardware controls. 
Procedure: Each interface was evaluated in two steps. To 
assess the learnability of the interfaces, participants first 
completed the same walkthrough procedure that we had 
used in the pilot study. At the end of this part, participants 
were quizzed about the interface’s functionality. Then par-
ticipants completed four qualitative tasks as described be-
low and filled out a questionnaire. Then they repeated the 
same procedure with the other interface. Interface and task 
order were counterbalanced. The entire study lasted about 
1 hour. 
Tasks: In all tasks, trials started by participants clicking a 
button labeled “start”, adjusting volume either in media 

player or the control panel, and completing the trial by hit-
ting the space key. Each task consisted of four training and 
eight timed trials. 
1. Unmute task. The participant’s task was to make Media 
Player’s audio play from a muted state. The Media Player 
was muted by its application volume being zero or muted, 
the master volume being zero or muted, or any combination 
thereof.  
2. Restore task. Participants found the volume/loudness 
settings initialized to a randomly chosen reference setting 
making Media Player play at reference loudness. The par-
ticipants task was to hit a button labeled “randomize” that 
changed the volume settings and then to bring back the 
loudness of Media Player to this trial’s reference loudness. 
3. Maximize-one task. The participant’s task was to maxi-
mize the loudness of Media Player, while affecting the vol-
ume of all other applications as little as possible. 
4. Maximize-all task. The participant’s task was to make 
the PC play as loud as possible, while affecting the relative 
mix between applications as little as possible.  

Results 
Task completion time: Confirming our first hypothesis, 
subjects achieved significantly better task completion times 
in all four tasks when using the flat interface (Figure 8). All 
differences between interfaces were significant at p<0.01. 
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Figure 8: Average task completion times in millisec-
onds (and Std. Error of Mean) 

A 2 (flat v. control) x 4 (4 tasks) repeated measures Analy-
sis of Variance (RM ANOVA) was carried out on the task 
time data. We observed a significant main effect for Inter-
face, F(1,18)=23.8, p<0.01. However, there was no signifi-
cant effect for Task or the interaction. The control interface 
was consistently slower than the flat interface for input 
across all tasks. 
Error rate: For each of the four tasks, participants pro-
duced lower error rates when using the flat interface than 
when using the control interface (Table 1). Due to the dif-
ferent nature of the four tasks, error was computed differ-
ently for each task. Unmute task: number of cases where 
Media Player was not successfully unmuted. Restore task: 
percentage the entered loudness was off with respect to 
reference loudness. Max one: percentage the loudness of 
the other two applications was off from their starting loud-



 

 

ness. Max all: percentage the loudness of the other two 
applications was off from the loudness that would have 
preserved the mix. Paired t-tests for interface showed sig-
nificant effects for restore, t(6)= 3.70, p< 0.01 and max one 
t(6)= 4.39, p< 0.01 and borderline significance for max all, 
t(6)= 2.37, p< 0.06. 
 
task flat interface control interface 
unmute 2 of 64 5 of 64 
restore 4.4% (1.1%) 11.8% (2.6%) 
max one 0.4% (0.4%) 27.7% (6.1%) 
max all 1.0% (0.7%) 8.4% (2.7%) 

Table 1: Error rate (and Std. Error of Mean) 

Subjective satisfaction: On a five-point Likert scale (1 = 
strongly disagree, 5 = strongly agree), average ratings on 
learnability (“self explanatory”, “simple”, and “clear”) 
ranged between 3.9 and 4.3 out of five for both interfaces. 
“Making changes was simple” was rated 4.6 out of 5 for 
the flat interface vs. 3.6 for control and “Making changes 
was efficient” was rated 4.3 for flat vs. 3.4 for control, but 
none of the differences where statistically significant. 
When asked, 5 of the 7 participants indicated specific trou-
ble on certain tasks when using the control interface. The 
restore task seemed particularly hard with this interface. 
Participants reported no problems for the flat interface. 
In the final ranking, the majority of subjects (5/7) indicated 
a preference for the flat interface over the control. 

DISCUSSION AND CONCLUSIONS 
Overall, our user study confirmed our hypotheses and pro-
vided the evidence that the flat volume control model leads 
to actual time savings when troubleshooting audio, as well 
as subjective preference over the existing hierarchical vol-
ume control model. While these time savings are a clear 
indication for the usefulness of the flat system, the results 
of the walkthrough part of the study are at least as impor-
tant. Unlike the quantitative part, which required partici-
pants to solve the same volume control problem repeatedly 
and thus measured how long it takes users to execute a 
troubleshooting interaction, the walkthrough required par-
ticipants to solve volume control problems. The virtual 
absence of complications during this part of the study indi-
cates the probably most valuable benefit of the flat model: 
the flat model prevents users’ volume control needs from 
becoming problems in the first place. 
As future work, we plan to explore in how far the concepts 
described in this paper transfer to other application areas, 
such as sound studio equipment or even non-audio applica-
tions, such as multi-stage gamma corrections. 
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