

Flat Volume Control: Improving Usability by Hiding the
Volume Control Hierarchy in the User Interface

Patrick Baudisch1, John Pruitt2, and Steve Ball3
1Microsoft Research, 2Microsoft MSX, 3Microsoft eHome

One Microsoft Way, Redmond, WA 98052, USA
{baudisch, jpruitt, stevebal}@microsoft.com

ABSTRACT
The hardware-inspired volume user interface model that is
in use across all of today’s operating systems is the source
of several usability issues. One of them is that restoring the
volume of a muted application can require an inappropri-
ately long troubleshooting process: in addition to manipu-
lating the application’s volume and mute controls, users
may also have to visit the system’s volume control panel to
find and adjust additional controls there. The “flat” volume
control model presented in this paper eliminates this and
other problems by hiding the hardware-oriented volume
model from the user. Using the flat model, users use one
slider per application to indicate how loud they want the
respective applications to play; the slider then internally
adjusts all hardware volume variables necessary to obtain
the requested output. By offering a single point of control
for each application, the flat model simplifies controlling
application volume and restoring muted applications. In
our studies, participants completed all four volume control
and mixing tasks faster and with less error when using the
flat model than when using the existing hardware-oriented
volume control model. Participants also indicated a subjec-
tive preference for the flat model over the existing model.
Categories & Subject Descriptors: H5.2 [Information
interfaces and presentation]: User Interfaces. - Graphical
user interfaces.
General Terms: Human Factors, Design.
Keywords: Audio, sound, volume control, user interface.blutwurst

INTRODUCTION
Imagine the following scenario. In the middle of a presen-
tation, the presenter tries to play a video clip. When hitting
‘play’ on the software video player, the video starts playing
but the audio remains silent. In order to fix the problem, the
presenter cranks up the volume slider in the video player,
but without success. When realizing that it may not be the
player causing the problem, the presenter opens the sys-
tem’s volume control panel and finds the state shown in
Figure 1. The presenter notices that the “master volume”
slider (labeled “Volume Control”, 5) is set to zero, which
would explain why the sound did not play. The presenter
then cranks the slider all the way up, but still, nothing. Af-
ter examining the corresponding mute checkbox (6) and the

state of the wave volume slider (3) the presenter notices
that the wave channel is muted (4). Unchecking this
“Mute” checkbox finally allows the audio to play (although
the audio now plays much louder than intended, as the ap-
plication volume and wave volume sliders were set to their
maximum values during the troubleshooting process.)
The problem we are addressing in this paper is that this
process takes more time and effort than necessary.

a

Figure 1: Current volume control model: application
audio output is only active when its volume slider (1)
and wave and master sliders in the control panel
(3, 5) are set to non-zero values and the three mute
check boxes (2, 4, 6) are unchecked.

A look under the hood
We claim that the described problem is caused by the fact
that existing volume control interfaces expose the volume
control structure of the computer’s sound card to the user.
As shown in Figure 2, the volume variables in today’s sys-
tems form a hierarchy. Before a sound produced by an ap-
plication reaches the speakers, it is affected by all sliders
and mute widgets in the path between that application and
the speakers. The actual loudness of an application (we will
use the term “loudness” to describe the final audio level
that is sent to the speakers and “volume” for internal vol-
ume variables) is the product of all volume variables along
the path1. Determining how loud an application actually

1 In addition, there is often an analog knob on the speakers, which

is typically not controllable via software on today’s average PC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.

plays thus requires users to read all volume variables along
the path and mentally multiply them.
An application is muted whenever at least one of the multi-
plied volume variables along its path is zero, i.e., a slider
set to zero or a checked mute button, no matter what the
state of the other variables in the signal path. Detecting that
therefore requires checking all these variables. Restoring a
muted application requires restoring all muted volume vari-
ables along the path. These cases may also require users to
access the system’s volume control panel.

mutemute

mute

master
volume

media
player

mute

speakers

…

…
wave
channel

master

sound card channel

application
Figure 2: In the existing, hierarchical volume control
model (here MS Windows XP™), application sound
volume is reduced at up to six points along the signal
path (plus the volume knob at the speakers).

While we will use muting as our main scenario throughout
the paper, there are other volume control tasks that are
complicated by the hierarchical model. The hierarchical
model makes it difficult to set an application to a known
loudness, as this can require changing multiple variables
along the path. Also the task of making an application
louder can become complicated; in cases where the appli-
cation volume maxes out, users need to increase the master
volume instead, which in turn has a side effect on the loud-
ness of other applications. We will return to these scenarios
later in this paper and also in the user study section.
Even though some of today’s operating systems use a sim-
plified interface, e.g., one that hides the sound card channel
layer (e.g. Apple Macintosh), they all have the notion of a
master volume. Thus, the described problem exists across
platforms.
What to do?
This hierarchical model and the resulting multiplicative
volume model have desirable properties from an engineer-
ing point of view. For example, they offer a wide dynamic
range and, properly setup, can maximize the signal-to-noise
ratio. However, exposing this architecture to computer us-
ers results in complexity that, over time, can lead to addi-
tional user effort and error conditions. The professional
sound mixing equipment that first used this type of hierar-
chical volume control model was designed by and for audio

experts, but today’s typical computer users do not typically
fall into this category.
We therefore propose a new volume control interface
model—one that hides the internal hierarchical structure of
the sound card from the user. As we show in this paper,
this allows users to monitor and control the loudness of
applications more efficiently and especially solves the mut-
ing problem. At the same time, the proposed model
matches and sometimes outperforms the sound quality the
traditional model offers. We begin by presenting a walk-
through of the flat model and its user interface. Then we
briefly look at the related work, followed by details about
design and implementation of the flat volume control
model and methods for handling legacy issues. Finally, we
present the results of the studies we conducted and con-
clude with a discussion of our findings.
FLAT VOLUME CONTROL
The main benefit of the flat model is that it manages the
volume hierarchy for the user. This is realized by changing
the semantics of all volume sliders in the system to solely
represent loudness. Under the traditional model the volume
slider in Windows Media Player defined a single link in
Media Player’s volume path; in our redesign as a loudness
slider it now defines how loud Media Player plays, i.e. the
value of Media Player’s volume path as a whole. By ma-
nipulating the loudness slider, users indicate how loud they
want Media Player to play, but without defining how this is
supposed to be accomplished. It is the loudness slider itself
that then determines the best way of realizing the requested
loudness in terms of hardware volume variables and that
makes the necessary changes. This delegation reduces the
user’s load and obtains equal or better audio quality, as the
slider automatically optimizes the system’s signal-to-noise
ratio. We will describe the algorithms that accomplish this
in detail in the implementation section.
If we redrew the diagram from Figure 2 for the flat model,
we would see that the sound card channel and master layers
are gone; application loudness widgets are now directly
connected to the speakers. The hierarchy has been replaced
with a flat structure—thus the name of our approach.
The flat volume control panel
When switching to the flat model, the semantics of all vol-
ume control widgets across the system change, including
those located in the volume control panel. This requires
some changes in the control panel’s user interface. Figure 3
shows a screenshot of our volume control panel prototype.
This control panel allows users to perform three types of
interactions. First, sliders, one per application, allow users
to adjust the loudness of the respective application. Second,
the “all applications” thumbwheel allows users to adjust
the loudness of all applications at once. “Spinning” the
wheel makes all application sliders move up and down, as
illustrated by Figure 4. Third, clicking the “mute all”
pushbutton visibly brings all sliders to zero and makes the
mute button change its label to “restore all”. Clicking the
mute button again restores the values of all sliders to their
previous states.

thumbwheelmute

application loudness

Figure 3: The flat volume control panel. Application
sliders represent the loudness of that application.
Thumbwheel and mute affect all application sliders.

a b

c d
Figure 4: Adjusting the volume of all applications at
once using the thumbwheel. (a b) Dragging the
wheel to the right makes all sliders go up proportion-
ally. When the first slider maxes out all sliders stop;
this preserves the volume mix. (b c) dragging it to
the left makes all sliders go down proportionally until
they all hit zero. (c d) Clicking the “restore all”
push button restores to the last non-zero setting.

It is essential to the flat user interface, that widgets cannot
only be manipulated directly, but that they also track the
value of the variable they represent and update themselves
if that value changes. This is necessary because the loud-
ness represented by one widget can be affected by another
widget. Clicking “mute all”, for example, can change the
value of all other loudness variables in the system. Using

widgets that continuously check the variable they represent
assures that the state of the interface remains consistent. As
an example, when the user operates a loudness slider in an
application, the corresponding slider in the control panel
moves in sync and vice versa. Moving the thumbwheel has
an impact on the loudness of many applications and conse-
quently, all sliders representing application volume
move—in the control panel (Figure 4a b), as well as in the
applications. When an application’s mute button is clicked,
the loudness slider of that application jumps to zero and
when mute is clicked again the slider restores itself. When-
ever an application ends up having zero loudness, its mute
button reflects that by changing its state accordingly. If all
applications have zero loudness, e.g., because the thumb-
wheel was spun all the way down (Figure 4b c), the main
mute changes its state to reflect that. Any way of unmuting
the system, whether it is hitting “restore all” (Figure 4c d)
or dragging an application loudness slider up, restores the
mute button’s “mute all” face.
The flat model solves the muting problem
In the traditional volume control model, the loudness of
any application may be reduced by other volume variables,
such as the master volume. Sliders therefore only mean
“the loudness of this application is at most x”. In the flat
model, however, sliders mean “the loudness of this applica-
tion is x”. In the state shown in Figure 3, for example, 3D
Pinball is playing at about 80% loudness, Windows Media
Player at ~40%. One of the main benefits of this paradigm
switch is that it solves the muting problem. Detecting that
an application is muted becomes straightforward; an appli-
cation is muted if and only if its loudness slider points to
zero. Restoring a muted application is equally straightfor-
ward. Any muted application can be restored by dragging
the application slider up—the slider will adjust all volume
variables necessary. As a result, the need to access the con-
trol panel and to check multiple widgets is eliminated.
The flat model also addresses the two other scenarios men-
tioned earlier. First, since loudness sliders can increase
channel and master volume variables when necessary, us-
ers can now always access the full possible range of output
loudness from inside their applications. Second, the flat
model establishes a fixed mapping between slider state and
loudness, which allows users to set an application to any
known loudness, such as “the loudness for giving slide
presentations in this conference room”, by setting its slider
to a remembered position.
RELATED WORK
Sound is in wide use in human-computer interaction.
Sound allows for eyes free interactions. Since users can
detect sounds rapidly, sound was found highly effective for
monitoring applications [11] as well as various types of
notification [20]. In other areas, sound has been used to
make VR environments [14] and reading more immersive
[2], and to help improve the usability of devices, e.g., by
helping users navigate hierarchical structures [5], acquire
buttons on small screen devices [4], or recognize the func-
tions of products [12].

Along with pitch, location, and semantic context, sound
volume is one of the main cues that help users distinguish
sound sources [19]. Controlling volume therefore plays a
major role in audio-only media spaces [18], where volume
has been used to denote proximity between participants in
conversations [1]. Various interface strategies have been
suggested for controlling volume, such as hand gestures [7,
10], bar code readers [13], or physical widgets connected
to a computer [8]. A broad interest in controlling volume in
a convenient way has created a market for such products
(e.g. [9]).
The widgets deployed in the volume control interfaces pre-
sented in this paper have been studied in various contexts.
Interaction techniques inspired by a paint metaphor have
been proposed as means for efficiently manipulating larger
numbers of sliders [3]. The design of mute buttons is sub-
ject to the discussion of how to visualize the state of a but-
ton [15, 6]. Thumbwheel widgets have been used to enter
variables on an infinite range, e.g. in flight simulation [16]
and 3D viewers (e.g., examinerViewer, www.sgi.com).

THE DESIGN OF THE FLAT VOLUME CONTROL PANEL
In this section, we take a closer look at the design shown in
Figure 3 and point out design alternatives. Before we focus
on the widgets that form the interface of the flat architec-
ture, we give a quick overview of other aspects of the flat
control panel (Figure 3), i.e., the changes that make it dif-
ferent from the Windows XP control panel shown in Figure
2. These changes are independent of the flat concept, so
they may also be applied to a non-flat control panel or re-
moved from the flat control panel altogether.
General design changes
First, the control panel shown in Figure 3 does not expose
sound card channels, such as “wave”. The primary reason
for that is that today virtually all PC sounds go through the
wave channel, so that all other channels have become obso-
lete. Hiding channels reduces clutter and brings this dialog
up to par with the Apple Macintosh, the designers of which
chose not to expose sound card channels in the first place.
Note that the flat volume control concept works with vol-
ume hierarchies of any depth, so it remains applicable even
if sound card channel volume was exposed.
As an alternative to sound card channels, and unlike the
Windows XP control panel, the flat panel lists “Now Play-
ing and Recently Playing Sounds”, i.e., applications. This
provides users with direct access to application loudness
even including applications that do not offer volume con-
trol in the application itself, such as the 3D Pinball game in
Figure 3. The implementation section of this paper explains
how this is implemented using so-called ‘shims’.
Finally, the control panel was uncluttered by moving appli-
cation-specific mute buttons and all balance sliders into an
“advanced mode” panel. Layout and graphical design were
changed as well.

The thumbwheel and the mute button visuals
Figure 5a shows a design alternative we explored, called
flood mark design. The input capabilities of this widget are

equivalent to the thumbwheel shown earlier. However, this
design offers additional functionality by providing a flood
mark, a vertical line that always remains in touch with the
knob of the loudest application. The flood mark gives users
a visual indication for the current overall loudness of their
system. The attempt to drag an application slider beyond
the flood mark makes the flood mark slider go up in paral-
lel (Figure 5a b, the topmost of the three sliders was
dragged up); lowering the loudest application makes the
flood mark slider follow until it hits the knob of another
application slider. Adjusting the flood mark slider itself
scales all application sliders proportionally (Figure 5b c).
Despite the flood mark design’s potential for contributing
to a more powerful interface, we chose to pursue the
thumbwheel design when early usability testing indicated
that the additional information provided by the flood mark
made this design slower to learn and read than the thumb-
wheel design. Also, some users who had extensive experi-
ence with the traditional volume control panel falsely iden-
tified the slider as a traditional master volume slider, which
caused them to read application loudness incorrectly.

a

b

c
Figure 5: The ‘flood-mark’ on the control panel de-
sign allows users to read how loud their system is.

The point behind using a thumbwheel is that thumbwheels
allow users to manipulate a variable without the state of
that variable being exposed; for our purposes, the thumb-
wheel is basically a slider with the knob being deliberately
hidden. In our design, this reduces the cognitive load for
the user and avoids the risk of misinterpretation. The flat
model provides visual feedback by moving application
sliders instead.
Our initial concerns that Windows users would be unfamil-
iar with thumbwheels went away during our usability study
(see the respective section). Our participants seemed to be
fairly familiar with thumbwheels, which might be ex-
plained by the fact that many consumer devices, such as
cell phones, Sony PDAs, and Microsoft mice utilize them.
The visual design motivation of the “Mute all” button is
similar to the thumbwheel. Since all relevant loudness in-
formation is contained in the application sliders, there is no
need for users to read the state of the mute button. In order
to discourage users from reading the button, we gave it the

visual appeal of a push button—a widget that, unlike
checkboxes, is generally used as a pure input widget [15].

IMPLEMENTATION AND ALGORITHMS
Adjusting the loudness of a single application can require
the flat system to apply changes to a larger number of vol-
ume variables in the underlying volume variable hierarchy.
Imagine, for example, that, while the overall system is
muted, a user unmutes an application by dragging its appli-
cation slider up. This requires the flat system to deactivate
the main mute, but to prevent other applications from start-
ing to play as well the flat system also needs to mute all
other applications. In this section, we describe the system
design and algorithms that accomplish this.
Components: In order to be able to make global adjust-
ments, all loudness computation is done from within a cen-
tral program that maintains back-and-forth communication
with all loudness widgets, whether in the volume control
panel or an application. This communication is built into a
customized loudness slider; applications that use that slider
are automatically loudness-enabled.
Data structures: All computation is based on two main
data structures, i.e., hardware-oriented volume and flat
loudness. Hardware-oriented volume is a tree structure that
contains the variables shown in Figure 2; mute is repre-
sented as variables that take on the values 0% and 100%.
Flat loudness uses the same hierarchical structure, but dif-
ferent semantics. Leaves in the tree represent application
loudness; nodes are defined as the maximum of their chil-
dren. Leaves and nodes determine the value of the interface
widgets each of them is associated with. By definition, a
mute widget is muted if the associated variable is zero.
When the flat system is launched, it reads the hardware
volume state and converts it to flat format. From then on,
volume is managed in flat format. Whenever loudness is
adjusted, the flat format is translated to hardware-oriented
format and sent to the system’s audio API in order to make
the changes audible.
Algorithms: Hardware-oriented volume is converted to flat
loudness by multiplying node values by their parent’s value
in a top-down traversal and then setting all nodes to the
maximum of the values of their child nodes in a bottom-up
traversal. The back conversion is done by dividing all node
values by their parent’s value in a top-down traversal.
When the user adjusts the loudness of some node, the flat
structure preserves its consistency by repairing the path
from the node to the root, as well as the node’s sub tree.
Note that this algorithm explains all the behavior described
in the interface walkthrough, such as the tight coupling
between mute and sliders or the behavior of the flood mark,
which is simply coupled to master volume. The hardware-
oriented volume states created by this algorithm have the
following properties. The master volume is always mini-
mized, the wave channel is set to a constant 100%, all other
channels are muted, and application volume variables are
always maximized. This optimizes the system’s signal-to-
noise ratio—better than a typical user might configure.

The current status of our implementation is that the volume
control panel shown in Figure 7 is implemented in Win-
dows native code, while the add-ons required for the flat
volume control model are implemented as prototype code
(Macromedia Flash) to allow for more efficient experimen-
tation with different algorithms and interfaces.

DEALING WITH LEGACY ISSUES
Implementing the full extent of the flat volume control
model requires the participation of applications and volume
control panel. This would suggest that introducing the flat
model would face a huge hurdle, as it is unlikely that a user
would upgrade the operating system and all applications at
the same time. Fortunately, this hurdle can be overcome by
the use of application ‘shims’ and ‘flood mark sliders’.

Legacy applications in a flat system
The handling of legacy applications depends on their vol-
ume control capabilities. Applications that produce sound,
but offer no volume control interface are particularly easy,
as the flat system can simply manage loudness for them.
Legacy applications with internal volume control interface
need to be kept in sync with the flat system. While the flat
system cannot control user interface elements inside the
legacy application (volume control widget inside the appli-
cation may therefore at times reflect an incorrect loudness
value), the flat system can still control the application’s
volume and thus apply the flat model. For that purpose, the
flat system uses so-called application compatibility shims.
Shims are callback functions inserted into the get and set
volume functions that applications call. While shims are
active, legacy applications effectively communicate with
the flat system rather than the sound hardware, which al-
lows the flat system to manage loudness for the application.
This also allows the user to adjust the application’s loud-
ness through the control panel.

Flat applications in legacy operating system
The opposite case, a flat application running in a legacy
system, is of particular interest, as it allows deploying the
presented concepts on a per-application basis—an easier
step than adoption on an operating system-wide scale.
The slider inside a flat-enabled application always repre-
sents loudness, also when running in a legacy operating
system. If necessary, the slider itself now increases the sys-
tem’s master volume and mute to achieve the requested
loudness. The only difference compared to a full flat im-
plementation is that the flat application cannot establish the
shim mechanism and thus cannot prevent other applications
from getting louder in that case. In order to warn users of
this side effect, sliders may optionally display a little hori-
zontal line across the slider (Figure 6a) to indicate: “Drag-
ging the knob beyond this line will increase the loudness of
all other applications.” This line is called flood mark—
vaguely related to the flood mark control panel design pre-
sented earlier (but not subject to its usability issues). Drag-
ging the slider knob beyond the flood mark drags the flood
mark with it (Figure 6b c). Dragging the knob back down
leaves the master volume unchanged (Figure 6c d). This

prevents reducing the loudness of one application from
reducing the loudness of or muting others. Flood marks can
be complemented with a handle, shown as a small rectangle
attached to the flood mark. By dragging the flood mark
users adjust the master volume directly (Figure 6d e).

a b c d e
Figure 6: (a) A flood mark slider consists of a slider
and a flood mark that warns users “exceeding this
loudness will increase the loudness of other apps”,
(b-e) walkthrough.

PILOT STUDY
Before conducting our actual user study, we carried out a
pilot study to get a first impression of the learnability and
usability of the flat volume control concept and our control
panel prototype and to identify potential usability bottle-
necks. Moreover, we wanted to get a general sense of
whether the flat volume concept combined with the other
design changes described earlier were perceived as im-
provements over the volume control panel of the currently
most widely used operating system. We therefore com-
pared our flat volume prototype with the volume control
interface of Microsoft Windows XP.
The XP interface was implemented as a Windows XP sys-
tem running three sound sources—Windows media player,
3D Pinball, and Windows new message notifications. The
flat interface offered identical functionality, but its sliders
represented loudness and it used the control panel shown in
Figure 3 in a desktop with matching visuals (Figure 7
shows a screenshot of that desktop, but with a different
control panel). Desktop, control panel, and all relevant ap-
plication functionality were simulated using Macromedia
Flash. Both interfaces were run on a PC running Windows
XP on a 20” LCD screen at 1024x768 pixel resolution.
Seven participants were recruited from the larger Puget
Sound area. All were fairly experienced Windows users
and had used their PCs for sound and audio purposes, e.g.,
playing music via ripped format, listening to internet radio,
etc. All participants were familiar with the standard Win-
dows XP volume control panel.
During the study, participants received verbal instructions
via a voice connection and we observed the participant’s
actions from behind a two-way mirror. Participants re-
ceived no training. We started by asking participants to
make the PC, which was currently muted, play sounds.
Then we asked them to increase the volume of the CD.
Next, we called them on the phone, on which we hinted
that we couldn’t hear them very well and if necessary
prompted them to turn down the volume. After the phone
call ended we asked them to restore the volume. We then

asked them to turn all volume up or down a little. After
participants had completed this walkthrough, we encour-
aged them to explore the volume control panel and applica-
tion volume controls at their own pace. Then we repeated
the same sequence with the other interface. At the end of
the study, we interviewed participants and assessed their
comprehension of the involved interface elements. The
study lasted about 30 minutes.

Results
All seven participants were able to complete all tasks in-
volved in the walkthrough with either interface. It was ob-
served that participants had no trouble operating the flat
interface, despite their lack of familiarly with this interface
style. The flat interface received a number of positive com-
ments. Most relevant for this study, all participants recog-
nized and liked the functionality of the thumbwheel and the
fact that it raised or lowered the volume sliders of all appli-
cations in unison. When explicitly asked whether the fact
that sliders moved at different speeds (this was caused by
the proportional slider motion, see Figure 4a b) would be
strange, participants disagreed and stated that this behavior
was logical and intuitive. The additional changes were well
received as well. All seven participants liked the fact that
the flat control panel listed applications instead of the
sound card channels. The application volume sliders were
considered useful for adjusting the volume of the Pinball
game, which by itself offered no volume control.
The main shortcoming of the flat interface mentioned by
the participants was the discoverability of the thumbwheel.
All participants discovered the functionality of the wheel,
but 6 out of 7 did not touch it during their initial explora-
tion of the control panel; in most cases, not until the part of
the experiment were we asked them to “turn everything up
a little”. In subsequent prototypes, we have addressed this
issue by adding a brief 10-pixel back and forth rotation
animation to the wheel when the control panel opens.
All seven participants expressed a strong preference for the
flat interface. While this did not clearly tell us which aspect
of the new control panel was responsible for the prefer-
ence, it indicated that the design of our control panel as a
whole was on the right track.

USER STUDY
With the improved thumbwheel design, we conducted a
formal user study to isolate and evaluate only the flat vol-
ume control aspects. We did this by comparing the flat in-
terface with a system that was visually and functionally
identical, but used the traditional hierarchical volume con-
trol system instead (Figure 7).
Our hypothesis was that participants would troubleshoot
volume control, restore volume, and increase volume faster
when using the flat interface. This should result in higher
subjective satisfaction for that interface. However, we ex-
pected the flat interface to score lower in terms of learn-
ability, as some participants would be already familiar with
the concept behind the control interface while the flat con-
cept would be new to them.

Interfaces: The flat interface used in this study was identi-
cal to the flat interface in the pilot study reported in the
previous section, but it used the improved thumbwheel.
The control interface (Figure 7) was identical to the flat
interface except that it implemented the traditional hierar-
chical volume control model. Its sliders represented volume
not loudness and its control panel offered a master volume
slider and a main mute checkbox instead of the thumb-
wheel and mute push button offered by the flat interface.
The control interface’s control panel also exposed per-
application mute checkboxes. This was necessary to allow
users to notice and unmute applications that had been
muted from within the application. The flat interface did
not need to expose these, as the flat model manages mute
indirectly through the loudness widgets. Besides this, both
interfaces used the same visuals (Figure 7 vs. Figure 3).

Figure 7: The experimental environment used in the
pilot study and the user study, here with the volume
control panel of the control interface.

Participants: Seven participants were recruited from the
larger Puget Sound area. Each participant had access to a
Windows PC in their place of residence and used it at least
once a month. Actual computer tenure and level of exper-
tise varied from “casual user” to “skilled daily PC user”.
All participants indicated that they had some experience
listening to sounds or music on the PC and all had adjusted
the sound level of their PC multiple times in the past either
through software or hardware controls.
Procedure: Each interface was evaluated in two steps. To
assess the learnability of the interfaces, participants first
completed the same walkthrough procedure that we had
used in the pilot study. At the end of this part, participants
were quizzed about the interface’s functionality. Then par-
ticipants completed four qualitative tasks as described be-
low and filled out a questionnaire. Then they repeated the
same procedure with the other interface. Interface and task
order were counterbalanced. The entire study lasted about
1 hour.
Tasks: In all tasks, trials started by participants clicking a
button labeled “start”, adjusting volume either in media

player or the control panel, and completing the trial by hit-
ting the space key. Each task consisted of four training and
eight timed trials.
1. Unmute task. The participant’s task was to make Media
Player’s audio play from a muted state. The Media Player
was muted by its application volume being zero or muted,
the master volume being zero or muted, or any combination
thereof.
2. Restore task. Participants found the volume/loudness
settings initialized to a randomly chosen reference setting
making Media Player play at reference loudness. The par-
ticipants task was to hit a button labeled “randomize” that
changed the volume settings and then to bring back the
loudness of Media Player to this trial’s reference loudness.
3. Maximize-one task. The participant’s task was to maxi-
mize the loudness of Media Player, while affecting the vol-
ume of all other applications as little as possible.
4. Maximize-all task. The participant’s task was to make
the PC play as loud as possible, while affecting the relative
mix between applications as little as possible.

Results
Task completion time: Confirming our first hypothesis,
subjects achieved significantly better task completion times
in all four tasks when using the flat interface (Figure 8). All
differences between interfaces were significant at p<0.01.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

unmute restore max one max all

Control
Flat
Control
Flat

Figure 8: Average task completion times in millisec-
onds (and Std. Error of Mean)

A 2 (flat v. control) x 4 (4 tasks) repeated measures Analy-
sis of Variance (RM ANOVA) was carried out on the task
time data. We observed a significant main effect for Inter-
face, F(1,18)=23.8, p<0.01. However, there was no signifi-
cant effect for Task or the interaction. The control interface
was consistently slower than the flat interface for input
across all tasks.
Error rate: For each of the four tasks, participants pro-
duced lower error rates when using the flat interface than
when using the control interface (Table 1). Due to the dif-
ferent nature of the four tasks, error was computed differ-
ently for each task. Unmute task: number of cases where
Media Player was not successfully unmuted. Restore task:
percentage the entered loudness was off with respect to
reference loudness. Max one: percentage the loudness of
the other two applications was off from their starting loud-

ness. Max all: percentage the loudness of the other two
applications was off from the loudness that would have
preserved the mix. Paired t-tests for interface showed sig-
nificant effects for restore, t(6)= 3.70, p< 0.01 and max one
t(6)= 4.39, p< 0.01 and borderline significance for max all,
t(6)= 2.37, p< 0.06.

task flat interface control interface
unmute 2 of 64 5 of 64
restore 4.4% (1.1%) 11.8% (2.6%)
max one 0.4% (0.4%) 27.7% (6.1%)
max all 1.0% (0.7%) 8.4% (2.7%)

Table 1: Error rate (and Std. Error of Mean)

Subjective satisfaction: On a five-point Likert scale (1 =
strongly disagree, 5 = strongly agree), average ratings on
learnability (“self explanatory”, “simple”, and “clear”)
ranged between 3.9 and 4.3 out of five for both interfaces.
“Making changes was simple” was rated 4.6 out of 5 for
the flat interface vs. 3.6 for control and “Making changes
was efficient” was rated 4.3 for flat vs. 3.4 for control, but
none of the differences where statistically significant.
When asked, 5 of the 7 participants indicated specific trou-
ble on certain tasks when using the control interface. The
restore task seemed particularly hard with this interface.
Participants reported no problems for the flat interface.
In the final ranking, the majority of subjects (5/7) indicated
a preference for the flat interface over the control.

DISCUSSION AND CONCLUSIONS
Overall, our user study confirmed our hypotheses and pro-
vided the evidence that the flat volume control model leads
to actual time savings when troubleshooting audio, as well
as subjective preference over the existing hierarchical vol-
ume control model. While these time savings are a clear
indication for the usefulness of the flat system, the results
of the walkthrough part of the study are at least as impor-
tant. Unlike the quantitative part, which required partici-
pants to solve the same volume control problem repeatedly
and thus measured how long it takes users to execute a
troubleshooting interaction, the walkthrough required par-
ticipants to solve volume control problems. The virtual
absence of complications during this part of the study indi-
cates the probably most valuable benefit of the flat model:
the flat model prevents users’ volume control needs from
becoming problems in the first place.
As future work, we plan to explore in how far the concepts
described in this paper transfer to other application areas,
such as sound studio equipment or even non-audio applica-
tions, such as multi-stage gamma corrections.

Acknowledgements
Thanks to Ed Cutrell and Mary Czerwinski for their com-
ments on this paper. Thanks to Frank Yerrace, Annette
Crowley, Larry Osterman, Frank Wong, and Jeremy Knud-
sen for their contribution to the volume control project.

REFERENCES
1. Aoki, P. et al. The mad hatter's cocktail party: a social

mobile audio space supporting multiple simultaneous
conversations. In Proc CHI’03, pp. 425–432.

2. Back, M., Cohen, J., Gold, R., Harrison, S., and Min-
neman, S. Listen reader: an electronically augmented
paper-based book. In Proc CHI’01, pp. 23–29.

3. Baudisch, P. Don't Click, Paint! Using Toggle Maps to
Manipulate Sets of Toggle Switches. In Proc. UIST’98,
pp. 65–66.

4. Brewster, S. Overcoming the Lack of Screen Space on
Mobile Computers. Personal and Ubiquitous Comput-
ing 6(3):188–205, May 2002.

5. Brewster, S. Using non-speech sounds to provide navi-
gation cues. TOCHI 5(3):224–259, Sept. 1998.

6. Carr, D.A. Specification of Interface Interaction Ob-
jects. In Proc. CHI’94, pp. 372–378.

7. Freeman, W.T. and Weissman, C.D. Television Control
by Hand Gesture. In IEEE Intl. Workshop on Automatic
Face and Gesture Recognition, 1995.

8. Greenberg, S. and Boyle, M. Customizable physical
interfaces for interacting with conventional applica-
tions. In Proc. UIST’02, pp. 31–40.

9. http://www.griffintechnology.com/products/powermate
10. Kohle, M. Special Topics of Gesture Recognition Ap-

plied in Intelligent Home Environments. Lecture Notes
in Computer Science 1371:285–296, 1998.

11. Kramer, G. An Introduction to auditory displays. In
Auditory Display: Sonification, Audification, and Audi-
tory Interfaces. Addison-Wesley 1994, pp 1–78.

12. Lee, C.H., Kim, S., Chae, C.S., Chung, K.H. Sound: an
emotional element of interactions a case study of a mi-
crowave oven. In Proc. DIS’00, pp. 174–182.

13. Masui, T., and Siio, I. Real-World Graphical User Inter-
faces. In Proc. HUC’00, pp. 72–84.

14. Naef, M., Staadt, O., and Gross, M. Spatialized audio
rendering for immersive virtual environments. In Proc.
VR Software and Technology, pp. 55–72.

15. Plaisant, C., Wallace, D. Touchscreen Toggle Switches:
Push or slide? Design issues and usability study. Uni-
versity of Maryland, CS-Tech Report 2557, 1990.

16. Rushby, J. Analyzing cockpit interfaces using formal
methods. In H. Bowman (editor), Elsevier Electronic
Notes in Theoretical Computer Science 43, Oct. 2000.

17. Shneiderman, B., Designing the User Interface: Strate-
gies for effective human-computer interaction, Third
edition, Reading MA: Addison-Wesley, 1998

18. Singer, A., Hindus, D., Stifelman, L. and White, S. Tan-
gible progress: less is more in Somewire audio spaces.
In Proc CHI’99, pp 104–111.

19. Wickens, C.D. and Hollands, J.G. Engineering Psy-
chology and Human Performance. Third Edition, Pren-
tice Hall, NJ, 2000.

20. Jones, D. The cognitive psychology of auditory distrac-
tion. The 1997 BPS Broadbent Lecture. British Journal
of Psychology, Vol 90(2), May 1999, 167–187.

